
 

 

ÉCOLE DOCTORALE SCIENCES DES MÉTIERS DE L’INGÉNIEUR 

Laboratoire PIMM – Campus de Paris 

 

THÈSE  

présentée par : Tarek FRAHI 

soutenue le : 19 octobre 2021 

pour obtenir le grade de : Docteur d’HESAM Université 

préparée à : École Nationale Supérieure d’Arts et Métiers 

 Spécialité : Mathématiques Appliquées  

 

 

ANALYSE TOPOLOGIQUE DES 

DONNÉES DANS LA MÉCANIQUE 

NUMÉRIQUE 

 

 
 

THÈSE dirigée par : 

M. Francisco CHINESTA  

Et M. Antonio FALCO 

 

Co-encadrée par : 

M. Jean-Louis Duval 
 

 
Jury  

M. Aziz HADOUNI,  Professeur, Université de La Rochelle Président 

M. Mejdi AZAIEZ,   Professeur, INP Bordeaux   Rapporteur 

M. Tomas CHACON,   Professeur, Université de Séville  Rapporteur 

M. Bertrand MICHEL, Professeur, Ecole Centrale de Nantes Examinateur 

Mme Susana FERREIRO, Docteure, Tekniker   Examinatrice 

M. Francisco CHINESTA,  Professeur, ENSAM Paris  Examinateur 

M. Antonio FALCO,   Professeur, Université CEU Valence  Examinateur 

M. Jean-Louis DUVAL,  Docteur    Examinateur 

M. Yves TOURBIER,   Docteur, Renault    Invité 

T

H

È

S

E 



 

 

 
 

 

Tarek FRAHI 

 

ANALYSE TOPOLOGIQUE DES DONNÉES 

DANS LA MÉCANIQUE NUMÉRIQUE 

 

 

Résumé 

La présente thèse à pour sujet la topologie numérique pour les systèmes mécaniques. Nous traitons de l’analyse, 

de la caractérisation et de l’exploitation des données à fort contenu topologique, tels que les déformations 

mécaniques, les microstructures, les séries temporelles et les trajectoires d’un système dynamique. 

Ces données contiennent souvent des informations hétérogènes, difficiles à mesurer, et qui ne se prêtent pas aux 

approches et métriques classiques. D’où, la nécessité d’avoir une approche générale avec des propriétés 

d’invariance, et qui permet d’extraire l’information topologique et géométrique des données, de la mesurer, et 

de l’utiliser sous forme de descripteurs topologiques. 

Ainsi, notre approche est d’adapter l’utilisation de l’homologie et de la persistance topologique aux 

problématiques physiques et d’ingénierie. Cette approche est purement basée sur les données, et consiste en 

l’extraction de descripteurs robustes, au moyen du transport optimal notamment, qui résument l’information 

contenue dans le système physique, dans un graphe, un diagramme, ou une image. Ces descripteurs sont ensuite 

utilisés dans des algorithmes d’apprentissage, pour le regroupement, la classification et la régression. 

Nous présenterons quatre applications publiées de notre méthodologie. La première consiste à identifier les 

modes de déformations d’une structure métallique à partir de la déformation du maillage associé. La seconde est 

la caractérisation d’échantillons de surfaces rugueuses de polymères pour prédire des grandeurs d’intérêt. La 

troisième est la prédiction de l’état d’un conducteur de voiture à partir des séries temporelles associées au 

mouvement de la tête, et qui est dû aux vibrations induites par la route. La quatrième est la signature topologique 

extraite des données réelles de trajectoires d’un robot autonome pour améliorer la maintenance prédictive. 

Mots-clés : Analyse Topologique des Données, Persistance Homologique, Transport Optimal, Mécanique 

Numérique, Apprentissage Automatique. 
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TOPOLOGICAL DATA ANALYSIS IN COMPUTATIONAL MECHANICS 

 
 

Abstract 

The present thesis focuses on the applications of numerical topology for mechanical systems. We will deal with 

the analysis, the characterization, and the exploration of data with high topological content, such as mechanical 

deformations, micro-structures, times series, and dynamical systems trajectories. 

This data often contains heterogeneous information, difficult to measure, and is not suitable for classical 

approaches and metric. Hence, it is necessary to have a general approach with invariance properties, allowing to 

extract the topological and geometrical information of the data, measure it, then use it as topological descriptors. 

Therefore, our approach is to adapt the use of homology and topological persistence to physics and engineering 

issues. This approach is purely data driven, and consists in the computation of robust descriptors, relying on 

optimal transport among others, to summarize the information contained within the physical system into a graph, 

a diagram, or an image. These descriptors are then used for machine learning, in clustering, classification and 

regression. 

We will present four published applications of our methodology. The first one is the identification of deformation 

modes of a metallic structure, from the topology of the associated deformed mesh. The second is the 

characterization of rough polymers surfaces profiles in order to predict quantities of interest. The third is the 

prediction of a driver state from the time series associated to the head movement, which is induced by vibrations 

of the road. The fourth is the topological signature extracted from real data of an autonomous robot trajectories, 

to improve its predictive maintenance. 

Keywords: Topological Data Analysis, Persistent Homology, Optimal Transport, Computational Mechanics, 

Machine Learning. 
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Résumé de la thèse en français

L’analyse de données topologiques est l’étude des ensembles de données en fonc-
tion de leurs propriétés et invariants topologiques. Elle fournit un cadre robuste
et général pour analyser les données sans avoir besoin d’une variété analytique am-
biante. Elle s’appuie sur la caractérisation des formes de données, des boucles et
des trous, à l’aide d’outils de topologie algébrique et de géométrie numérique. Pour
analyser la forme des données sans avoir besoin d’un plongement dans un espace
métrique, l’approche consiste à créer des objets géométriques appelés filtrations. En
recouvrant les données de simplex et de sphères de dimensions et d’échelles dif-
férentes, une approximation du nuage de données est obtenue. L’idée est alors de
voir comment les traits simpliciaux de différentes dimensions (points, segments, tri-
angles, tétraèdres...) se répartissent sur les échelles, et comment ils apparaissent et
disparaissent (formant des boucles et des trous). Pour cela, les groupes d’homologie
sont introduits. C’est une représentation algébrique des relations entre les éléments
simpliciaux. Ils sont regroupés en classes représentant des châınes de simplexes,
que nous appelons entités. L’homologie persistante permet alors de suivre comment
ces entités sont distribuées sur les échelles et dimensions, associant à chacune une
échelle de naissance et une échelle de mort, représentant respectivement les échelle
d’apparition et de disparition dans la filtration.

Pour résumer les informations de l’homologie persistante, les entités sont re-
groupées selon leurs dimensions et leur durée de vie, suivant la représentation des
groupes d’homologie. Ils peuvent ensuite être résumés à l’aide d’un ensemble de
descripteurs tels que les diagrammes de persistance et les codes-barres. C’est une
représentation en coordonnées 2D de la naissance et de la mort des entités. Des
représentations plus avancées peuvent alors être calculées telles que les images de
persistance, les noyaux, l’entropie et les paysages.

Le but de ces descripteurs de persistance est d’avoir des objets mesurables, qui
peuvent être utilisés pour calculer des statistiques. Le transport optimal est un cadre
idéal pour ce faire, permettant de définir des métriques robustes sur les représenta-
tions de persistance. Il est ensuite possible d’incorporer ces statistiques et représen-
tations calculées dans des modèles d’apprentissage automatique décrivant le système
physique sous-jacent.

Le besoin d’une approche générale axée sur les données est devenu plus aigu avec
la multiplication des sources de données, le volume toujours croissant des données
disponibles et la nature interdisciplinaire des nouveaux problèmes d’ingénierie.

Notre méthodologie présentée ici repose sur un cadre général de calcul d’homologie
persistante. Nous considérons le nuage de données comme une discrétisation finie
du système physique, et calculons la filtration associée la plus adaptée, prenant en
compte la nature des données, la dimensionnalité et les quantités d’intérêt visées.
Nous procédons ensuite au calcul des descripteurs de persistance, ainsi que des
métriques, des statistiques et du transport optimal. Le résultat peut ensuite être
intégré dans un processus d’apprentissage, pour le clustering, la classification et la
régression.
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Nous aborderons quatre applications de l’analyse de données topologiques :

• Regroupement expert de modes paramétriques [3] au chapitre 2

• Caractérisation des surfaces rugeuses [1] au chapitre 3

• Systèmes avancés d’aide à la conduite [2] au chapitre 4

• Surveillance et anticipation des états de fonctionnement de robots [4] au chapitre
5

Regroupement expert de modes paramétriques

L’analyse modale est largement utilisée pour traiter le NVH - Bruit, Vibration et
Dureté - dans l’ingénierie automobile. Les modes dits principaux constituent une
base orthogonale, obtenue à partir des vecteurs propres liés au problème dynamique.
Lorsque cette base est utilisée pour exprimer le champ de déplacement d’un prob-
lème dynamique, les équations du modèle deviennent découplées. De plus, une base
réduite peut être définie en fonction de la grandeur des valeurs propres, conduisant
à un modèle réduit non couplé, particulièrement intéressant lors de la résolution
de grands systèmes dynamiques. Cependant, l’ingénierie recherche des conceptions
optimales et se concentre donc sur des conceptions paramétriques nécessitant la so-
lution efficace de modèles dynamiques paramétriques. La résolution de problèmes
propres paramétrés reste une question délicate, et par conséquent, les approches non
intrusives sont privilégiées. Dans ce cadre, une base réduite constituée des modes
propres les plus significatifs est retenue pour chaque choix des paramètres du modèle
considéré. Ensuite, on est tenté de créer une base réduite paramétrique, en expri-
mant simplement la base réduite de façon paramétrique en utilisant une technique
de régression appropriée. Cependant, un problème demeure, qui limite l’application
directe de l’approche qui vient d’être évoquée, qui est celui de l’ordonnancement des
bases. Afin d’ordonner les modes avant de les interpoler, différentes techniques ont
été proposées dans le passé, le critère d’assurance modale -MAC- étant l’un des plus
utilisés. Nous proposons une technique alternative qui, au lieu de fonctionner au
niveau des modes propres, classe les modes par rapport aux formes des structures
déformées que les modes propres induisent.

La principale limitation de l’analyse modale est le manque de validité de la
base réduite dans le cas des modèles paramétriques. Pour les systèmes dynamiques
paramétrés, les matrices du modèle dépendront de ces paramètres, et la résolution
des problèmes propres paramétriques reste un délicate.

Lorsque l’on ne s’intéresse pas vraiment au régime transitoire, mais bien plus
au régime forcé, l’analyse harmonique représente une voie précieuse. La Décom-
position Propre Généralisée—PGD— permet de considérer la fréquence comme un
extra-paramètre du modèle ainsi que d’aborder l’amortissement général (non propor-
tionnel) et la dynamique non-linéaire, sous la stricte contrainte de temps réel, avec
même l’inclusion des paramètres du modèle comme coordonnées supplémentaires
[18, 17, 20].
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Cependant, certaines applications nécessitent des réponses transitoires précises,
et dans ce cas, la formulation et la solution du problème dynamique dans le do-
maine temporel sont conservées. À cette fin, l’une des techniques les plus utilisées
est l’analyse modale. Outre les avantages dans l’intégration temporelle, dus au dé-
couplage dynamique du système, les modes propres bénéficient d’une interprétation
physique, d’un grand intérêt pour le concepteur ou l’analyste structurel. Néan-
moins, lorsque l’on considère des modèles paramétriques comme c’est toujours le
cas lors de la phase de conception, lorsque le matériau et la géométrie ne sont pas
totalement définis, les modes dynamiques dépendent de ces paramètres comme dis-
cuté précédemment. Disposer d’un modèle de substitution exprimant l’évolution
paramétrique des modes propres est d’un grand intérêt. La construction de ces
modèles de substitution est aujourd’hui assez aboutie, en utilisant les régressions
non linéaires usuelles et avancées [19], la dernière utilisant la parcimonie et la régu-
larisation appropriée pour opérer dans des contextes de grande dimension, tout en
gardant le plus réduit possible le nombre de données ( solution des problèmes pro-
pres), et conduisant à des régressions (non linéaires) suffisamment riches tout en
évitant le surapprentissage. Ici, le plus délicat n’est pas la construction de la ré-
gression, mais le fait d’ordonner les différents modes propres impliqués dans la base
modale pour chaque choix de paramètres, afin de créer des clusters N (ou moins
dans le cas réduit), et de mettre dans chacun un mode de chaque base modale, de
sorte que les modes de chaque cluster restent proches (dans une certaine métrique).
Le problème principal reste la métrique à utiliser pour accomplir avec succès et ef-
ficacité un tel clustering. En général un tel clustering est effectué en opérant au
niveau des modes propres, dans l’espace vectoriel associé, en utilisant par exemple
le critère d’assurance modale—MAC— [52] qui procède à la comparaison des modes
résultant de chaque problème propre , en utilisant le produit scalaire habituel (les
modes similaires à un mode donné doivent rester assez colinéaires).

Lorsqu’on opère dans des espaces paramétriques de grande dimension, peu échan-
tillonnés, les matrices impliquées dans le problème propre résultant peuvent beau-
coup varier d’un choix de paramètres à l’autre, et par conséquent le critère de produit
scalaire à la base du MAC peut échouer. D’autre part, le fait de procéder dans un
espace vectoriel nécessite d’aborder soigneusement l’expression des différents modes
en considérant le même référentiel pour tous les systèmes mécaniques analysés.

Pour atténuer ces difficultés, nous proposons une technique alternative qui, au
lieu de fonctionner au niveau des modes propres, classe les modes par rapport à la
forme des structures déformées que les modes propres produisent, en tirant parti de
la propriété d’invariance de la topologie. Ainsi, nous utilisons une métrique capable
de comparer des formes, plus qu’une métrique pour comparer les vecteurs (modes
propres) qui ont produit ces formes, la dernière étant plus intrinsèque et héritant
des caractéristiques d’invariance. De plus, dans le cas présent, les modes propres
sont hétérogènes dans le sens où ils impliquent des déplacements et des rotations,
alors que les surfaces déformées associées sont purement géométriques.

Dans le chapitre 2, nous abordons la classification d’une série de bases modales
liées aux modes propres d’une structure mince équipée d’un maillage constitué
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d’éléments de coque, avec des degrés de liberté de déplacement et de rotation à
chaque nœud du maillage. L’épaisseur de la partie structurelle varie, avec son effet
conséquent sur les matrices de masse et de rigidité (l’amortissement est supposé
proportionnel) et par conséquent sur les valeurs propres et vecteurs propres, les pre-
miers définissant le nombre de modes à retenir dans la base réduite. Dans la présente
étude, les six modes rigides représentant l’ensemble de la structure translation (trois
modes) et rotation (trois modes) seront écartés et parmi les paires restantes valeur
propre-vecteur propre, les six vecteurs propres les plus pertinents (correspondant
aux six valeurs propres les plus élevées) retenus dans la base réduite liée à chaque
choix du paramètre du modèle (l’épaisseur).

Ces six modes liés à chaque structure (liés à une valeur d’épaisseur) définissent
une base réduite que l’on voudrait rendre paramétrique. Cependant, avant de con-
struire une régression capable de définir la base réduite pour chaque choix possible
du paramètre (épaisseur), il convient de classer les six modes propres de chaque base
réduite associée à chaque structure, en six clusters.

Cette tâche est obligatoire pour faciliter l’interpolation dans l’espace paramétrique
et aussi pour attacher un sens physique à ces modes. On pourrait imaginer que pour
une épaisseur donnée le mode de déformation le plus pertinent pourrait être lié à
l’extension alors que pour un autre choix d’épaisseur le mode de déformation le plus
pertinent pourrait être la flexion. Dans un tel cas, on préfère créer un cluster re-
groupant des modes de déformation similaires, pour évaluer comment chacun d’eux
dépend du paramètre d’un côté, et de l’autre pour faciliter la construction ultérieure
de la base réduite modale paramétrique.

Pour effectuer un tel regroupement, nous devons utiliser une métrique appropriée
pour comparer ces modes. En général, cette comparaison était traditionnellement
effectuée en comparant les modes propres au sein de l’espace vectoriel auquel ils ap-
partiennent. Dans le présent travail, comme annoncé précédemment, nous préférons
appliquer le mode de déformation à la structure de référence (non déformée), c’est-
à-dire appliquer le mode propre à l’emplacement des nœuds dans la structure de
référence pour obtenir la structure déformée liée à chaque mode de chaque config-
uration de structure (épaisseur) puis regrouper les structures déformées résultantes
par rapport à leur forme.

Caractérisation des surfaces de rugeuses

Parmi les procédés de formage de composites pour la fabrication de pièces struc-
turelles basés sur la consolidation de préformes pré-imprégnées, par exemple des
feuilles, des rubans, .... le placement automatisé de ruban (ATP) apparâıt comme
l’une des techniques les plus intéressantes en raison de sa polyvalence et de sa -
consolidation sur place, évitant ainsi l’utilisation d’autoclave. En particulier, pour
obtenir la cohésion de deux couches thermoplastiques, deux conditions physiques
spécifiques sont nécessaires (a) un contact quasi parfait (contact intime) et (b) une
température permettant la diffusion moléculaire dans la fenêtre de temps du procédé,
tout en évitant la dégradation thermique. Pour atteindre cet objectif, un ruban est
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posé et progressivement collé sur le substrat constitué des rubans préalablement
déposés. Du fait de la faible conductivité thermique des résines usuelles, un échauf-
fement local intense est généralement envisagé (laser, torches à gaz...) en liaison
avec une pression locale appliquée par un rouleau mobile. Ainsi, les deux princi-
paux facteurs pour assurer le contact intime à la surface des plis sont la pression
et la chaleur. Un contact intime est nécessaire pour favoriser la diffusion molécu-
laire. Dans ce processus, la chaleur joue un double rôle, d’une part elle améliore
la mobilité moléculaire et d’autre part, la diminution de la viscosité du matériau
avec l’augmentation de la température, facilite l’écoulement comprimé des aspérités
chauffées situées sur les surfaces des plis sous la compression appliquée par le rouleau
de consolidation.

Le modèle numérique de l’ATP a été introduit dans [6] en utilisant ce qu’on ap-
pelle la décomposition généralisée appropriée (PGD) [7, 8, 9, 10, 12]. La représen-
tation séparée impliquée dans le PGD permet la solution 3D à haute résolution
de modèles définis dans des domaines dégénérés où au moins une de leurs dimen-
sions caractéristiques reste beaucoup plus petite que les autres et également la con-
struction de solutions de modèles paramétriques où les paramètres du modèle sont
considérés comme extra- coordonnées [11, 13].

La modélisation physique et la simulation pour le placement automatisé de ban-
des (ATP) ont été proposées dans [14] pour étudier l’influence des paramètres de
matériaux et de processus, tandis que la modélisation de la consolidation et la régres-
sion non linéaire basée sur sPGD ont été utilisées dans [15] identifier les principaux
descripteurs de surface pour une caractérisation complète des surfaces de la bande.

Dans le chapitre 3, nous revisitons d’abord la modélisation de consolidation et
sa simulation haute résolution, permettant d’évaluer l’évolution temporelle du degré
de contact intime –DIC– lorsque deux surfaces rugueuses sont mises en contact,
chauffées et comprimées . L’écrasement des rugosités se produit principalement le
long de la direction transversale (celle liée à la largeur de la bande) induite par la
compression du rouleau. Ainsi, l’écoulement se produit dans la section transversale
dans laquelle la surface se réduit à une courbe unidimensionnelle (le soi-disant profil
de surface).

Il est bien connu au niveau expérimental que le degré de consolidation dépend
fortement des caractéristiques de surface (rugosité). En particulier, les mêmes
paramètres de processus appliqués à différentes surfaces produisent des degrés de
contact intime très différents. Cela nous permet de penser que la topologie de sur-
face joue un rôle important tout au long de ce processus. Cependant, la résolution
des modèles basés sur la physique pour simuler la compression de la rugosité se
produisant à l’interface des bandes représente un effort de calcul incompatible avec
les objectifs de contrôle de processus en ligne. Une approche alternative consiste
à prendre une population de différentes bandes, avec des surfaces différentes, et à
simuler la consolidation pour évaluer pour chacune la progression du degré de con-
tact intime –DIC– tout en comprimant les bandes chauffées, jusqu’à atteindre sa
valeur finale à la fin. de la compression. L’objectif final est de créer une régression
capable d’attribuer une valeur finale du DIC à n’importe quelle surface, permettant
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un contrôle de processus en ligne. Le principal problème d’une telle approche est
la description approximative de la surface, c’est-à-dire la manière la plus précise et
la plus compacte de la décrire à partir de certains paramètres appropriés faciles à
extraire expérimentalement, à inclure dans la régression qui vient d’être mentionnée.

Afin d’extraire une description concise et complète des surfaces rugueuses, nous
utilisons une description topologique [27, 28, 29, 26] des profils de surface, pour
construire des descripteurs tels que les diagrammes de persistance et les images.
Ensuite, les images de persistance sont considérées pour classer les surfaces, ou
comme descripteurs impliqués dans la régression les reliant au DIC final atteint
dans le processus de consolidation, permettant une prise de décision en temps réel.

Systèmes avancés d’aide à la conduite

Bien qu’il y ait eu récemment des progrès considérables dans la technologie des
voitures autonomes, la conduite repose encore principalement sur des facteurs hu-
mains. Même en mode de conduite autonome, les conducteurs humains doivent
souvent prendre une décision en une fraction de seconde pour éviter les accidents.
Par conséquent, il est toujours de la plus haute importance de développer des sys-
tèmes capables de discerner si le conducteur humain est attentif ou non aux con-
ditions de la route. En général, les systèmes avancés d’assistance à la conduite
(ADAS) [55, 56] sont des systèmes capables d’améliorer les performances du con-
ducteur, parmi lesquels, les limiteurs de vitesse adaptatifs, les détecteurs de piétons
[57] et les régulateurs de vitesse Les contrôleurs sont parmi les systèmes les plus
populaires. Les systèmes d’alerte de fatigue sont parmi les plus utiles parmi les
systèmes ADAS, et le but de ce travail est de contribuer au développement d’un tel
système basé sur une analyse systématique des conducteurs en conditions réelles de
conduite. L’estimation de l’état du conducteur (degré d’attention à la route, fatigue,
etc.) est un facteur très important pour assurer la sécurité de conduite [58, 59]. Une
revue récente sur le sujet peut être trouvée dans [60].

Dans le chapitre 4, nous visons à extraire des modèles de comportement à partir
des données des utilisateurs de voitures pour pouvoir estimer avec précision leur état.
Nous utilisons des données expérimentales, recueillies en appliquant une stimulation
mécanique à des personnes assises dans une automobile.

Notre objectif principal est d’extraire des modèles de comportement à partir des
données pour nous permettre d’apprendre les facteurs les plus pertinents affectant
l’attention du conducteur à la situation de la route.

Nous combinons certains outils de la théorie Morse [35] et de l’analyse de don-
nées topologiques (TDA) avec tous les concepts et méthodes associés (par exemple,
nombres de Betti, persistance d’homologie, codes-barres, images de persistance, etc.)
[34], la plupart d’entre eux ont été introduits et employés plus tard afin d’analyser et
de classer les données expérimentales. Cela nous permet d’introduire des concepts
sous forme de codes à barres, c’est-à-dire des diagrammes persistants et de durée
de vie de la même manière qu’ils sont utilisés dans l’homologie persistante. Notre
objectif principal est de prédire le comportement des automobilistes suivant une ap-
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proche supervisée [27]. Au lieu de considérer un signal de capteur original comme
la quantité d’intérêt, nous nous concentrons sur ses caractéristiques topologiques.
En ce sens, le cadre proposé dans cet article nous permet de dévoiler la véritable
dimensionnalité des données ou, en d’autres termes, le nombre réel de facteurs af-
fectant la performance du conducteur. Ainsi, nous modélisons un signal de capteur
en tant que système dynamique et, par conséquent, notre approche semble mieux
décrire ses propriétés, ou plutôt ses variations, telles que les extrema, les modèles et
l’auto-similitude, que d’autres approches.

Notons que notre approche est, dans certains sens, similaire à celle suivie par
Milnor et Thurston [36] dans l’étude des propriétés combinatoires des systèmes dy-
namiques en combinant des outils de la théorie des automates.

Surveillance et anticipation des états de fonctionnement de robots

Les robots autonomes suivent un certain nombre de règles introduites dans leurs
contrôleurs [61, 62, 63]. Cependant, lorsqu’ils interagissent avec l’environnement, de
petites variations peuvent entrâıner des mouvements imprévisibles à long terme. Ce
comportement est très courant en mécanique, caractérisant des systèmes présentant
un chaos déterministe.

Dans le cas pratique abordé au chapitre 5, un robot désherbeur (généralement
un flotteur) est censé couvrir une parcelle de vignoble, de manière optimale. Ici,
la “manière optimale” fait référence à la ligne de chemin qui permet de couvrir
l’ensemble du patch en un minimum de temps. Cependant, l’orographie du sol
présente une variabilité importante, ainsi que la localisation des raisins. Les robots
visent à heurter les pieds de raisin afin d’enlever l’herbe autour, puis de nombreuses
collisions suivant différentes directions sont nécessaires pour s’assurer que toute
l’herbe autour du pied de raisin est correctement enlevée.

Toute la variabilité pratique (sol, emplacement des raisins, répartition et taille de
l’herbe, obstacles, ...) ainsi que la sensibilité intrinsèque de la dynamique à une faible
variabilité des conditions physiques et opérationnelles, rend impossible la définition
d’une trajectoire déterministe du robot. Dans ces conditions, un mouvement presque
aléatoire semble être l’alternative la plus intéressante.

En pratique, pour éviter les contre-performances caractéristiques des mouve-
ments totalement aléatoires, ce mouvement aléatoire opérant à l’échelle locale est
combiné à une planification déterministe plus globale qui tente de mieux contrôler
la couverture du vignoble en séquençant l’opération aux différentes parcelles locales
couvrant l’ensemble domaine.

Nous visons à analyser les données collectées à partir d’un robot opérant dans dif-
férents patchs et dans différentes conditions (par rapport aux opérations de mainte-
nance) afin d’identifier l’existence de motifs capables d’identifier le patch particulier
dans lequel le robot opère, ou de distinguer les différents états du robot vis-à-vis des
opérations de maintenance. Disposer d’une sorte de QR-code ou de carte d’identité
de chaque robot, lorsqu’il opère au sein de chaque patch, dans un état particulier
(sain ou malsain), est d’une importance majeure par rapport à la maintenance pré-
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dictive ou opérationnelle des robots ou flotteurs de robots autonomes .
Nous analysons les données collectées afin d’en extraire le maximum d’informations

pouvant servir à les différencier, permettant un clustering non supervisé et/ou une
classification supervisée, préalablement à toute action concernant la modélisation à
l’aide de régressions adaptées.

L’utilisation du clustering de données est presque simple, dès lors que les données
sont homogènes et quantitativement exprimables à l’aide de nombres entiers ou réels,
permettant des opérations booléennes ou algébriques (addition, multiplication, ...).
L’intérêt d’organiser les données en groupes, de manière supervisée ou non, est qu’on
suppose que les données appartenant à un groupe donné partagent certaines qualités
avec les membres du groupe.

En procédant de manière non supervisée, la seule information pour regrouper
les données est la distance entre elles. Les données qui restent proches les unes des
autres sont censées partager certaines propriétés ou certains comportements. C’est
le raisonnement pris en compte dans la très populaire technique k-means [64, 65].
Cependant, la notion de proximité, conduisant au concept dérivé de similarité, né-
cessite la définition d’une métrique à des fins de comparaison. Lorsque les données
sont bien définies dans un espace vectoriel, les distances peuvent être définies et les
données peuvent être comparées en conséquence. Dans le cas de la classification
supervisée, on cherche la frontière linéaire (ou non linéaire) séparant les différents
groupes sur la base d’une qualité ou d’une propriété qui pilote le clustering des don-
nées. Dans ce dernier cas, la meilleure frontière séparant deux groupes de données
est celle maximisant la distance des données disponibles à la frontière, afin de max-
imiser la robustesse de séparation. C’est ainsi que fonctionne la machine à vecteurs
de support, SVM, par exemple [66].

Dans les deux cas (supervisé et non supervisé) l’existence d’une métrique per-
mettant la comparaison des données est supposée. Cependant, très souvent, les
données peuvent être beaucoup plus complexes, comme par exemple lorsqu’il s’agit
d’informations hétérogènes, éventuellement catégorielles ou qualitatives. C’est par
exemple le cas lorsqu’une pièce fabriquée est décrite par sa carte d’identité consti-
tuée du nom de l’employé impliqué dans l’opération, la désignation des matériaux
employés (certains d’entre eux étant donnés par son nom commercial), la tempéra-
ture du four dans lequel la pièce a été durcie et le temps de traitement. Dans ce cas,
la comparaison de deux parties devient assez controversée si la métrique employée
n’est pas correctement définie. Dans ces circonstances, généralement, les métriques
sont apprises à partir des données d’apprentissage existantes, comme c’est le cas lors
de l’utilisation d’arbres de décision (ou de son homologue de forêt aléatoire) [67, 68],
de code-to-vector [16] ou de neurones réseaux [69]. La situation devient encore plus
extrême lorsque les données ont un contenu topologique important et profond. C’est
le cas par exemple des séries temporelles ou des images de microstructures riches.
Ceux-ci sont généralement rencontrés en science des matériaux lors de la description
des métamatériaux (également appelés matériaux fonctionnels), ou de ceux présen-
tant un gradient de propriétés ou des architectures mésoscopiques. Ainsi, même dans
des conditions nominales, les séries temporelles différeront si elles sont comparées à
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leurs valeurs respectives à chaque instant. C’est-à-dire que deux séries temporelles,
même lorsqu’elles décrivent le même système dans des conditions similaires, ne cor-
respondent jamais parfaitement. Ainsi, ils diffèrent même s’ils ressemblent à une
certaine métrique qui devrait être apprise. Par exemple, notre électrocardiogramme
mesuré pendant deux minutes consécutives présentera une ressemblance, mais cer-
tainement les deux ne sont pas identiques, rendant ainsi une correspondance parfaite
impossible. Une petite variation créera un désalignement nécessitant des métriques
moins sensibles à ces effets. Le même raisonnement s’applique lorsque l’on compare
deux profils d’une surface rugueuse, deux images d’une mousse prises à deux en-
droits proches, ... ils présentent une ressemblance même s’ils ne correspondent pas
parfaitement.

Ainsi, des techniques visant à aligner les données ont été proposées. Dans le cas
des séries temporelles, le DTW [70, 71] a été appliqué avec succès dans de nombreux
domaines. La théorie du transport optimal est née en réponse à des problèmes
similaires [38].

Une autre voie consiste à renoncer à aligner les données, et à se concentrer sur
l’extraction des descripteurs adéquats et orientés objectif de ces données complexes,
permettant la comparaison, le clustering, la classification et la modélisation (à partir
de régressions non linéaires).

Une première possibilité consiste à extraire les principaux descripteurs statis-
tiques de séries temporelles ou d’images (moments, corrélations, covariogrammes, ...)
[72]. Parfois, des données exprimées dans les domaines spatio-temporels habituels,
sont transformées en d’autres espaces où leur manipulation est censée être plus
simple, comme Fourier, Laplace, DCT, Wavelet, ... descriptions de données. Les
descriptions les plus précieuses (au sens donné plus loin) semblent être celles qui
maximisent la rareté. Celles-ci sont largement prises en compte lors de l’utilisation
de la détection compressée [24], car elle représente une manière compacte, concise et
complète de représenter des données qui semblaient beaucoup plus complexes dans
l’espace physique habituel (espace et temps).

Nous considérons cette dernière voie, en utilisant une description basée sur la
topologie des données, dans le but de classer et aussi de construire des régressions
robustes exprimant des propriétés ou des performances à partir des données d’entrée
exprimées à partir de sa description topologique.

Par rapport à nos développements antérieurs, cela répond à un objectif nouveau
et complexe : comment la topologie contenue dans la trajectoire qu’un robot au-
tonome suit dans un environnement nuageux (où les interactions limitent l’horizon
de prévisibilité) peut renseigner sur l’emplacement du robot (qui s’intègre dans le
vignoble entier) ou l’état du robot (vis-à-vis des opérations de maintenance).

Conclusion

L’analyse des données topologiques et l’homologie persistante s’est avérée être une
approche fiable et utile pour étudier les changements dans les systèmes observés sans
une connaissance préalable du phénomène physique et de la modélisation.
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Cette méthodologie est particulièrement adaptée à l’étude de jeux de données
avec des informations topologiques et géométriques élevées telles que des formes,
des signaux, des surfaces et des trajectoires. En extrayant la structure algébrique
sous-jacente des données, il est possible de comparer et de détecter des changements
dans les systèmes et la dynamique étudiés, d’extraire des descripteurs statistiques
et de caractériser les systèmes physiques.

Il s’agit d’une méthodologie agnostique robuste et modèle, avec des possibilités de
généralisation prometteuses. De plus, il ne nécessite pas d’hypothèse de continuité
supplémentaire sur le collecteur de données, tout en étant sensible à l’échelle et à la
dimension.

Compte tenu du cadre et des calculs décrits, il est essentiel d’avoir une spécifica-
tion claire d’une dimensionnalité donnée d’un problème afin d’avoir une description
géométrique adaptée : unidimensionnelle (comme les séries temporelles univariées),
bidimensionnelle (comme les trajectoires planaires), tridimensionnel (comme la dé-
formation de formes), multidimensionnel (séries chronologiques multivariées). La
taille des données est également un paramètre crucial, car elle peut nécessiter un
choix particulier de filtrage. De plus, certaines spécificités des données peuvent
jouer un rôle, comme la filtration Alpha (triangulation) pour les surfaces maillées,
la filtration Rips (sphères) pour la diffusion comme la dynamique et la filtration
Sublevelset pour les données séquentielles. Enfin, des métriques spécifiques et per-
sonnalisées (transport optimal) permettent de tirer parti de la persistance calculée
pour l’extraction de caractéristiques la plus pertinente. Les propriétés de ces carac-
téristiques (espace vectoriel, stabilité) affecteront largement le choix des procédures
d’apprentissage ultérieures. Ce cadre affiche des capacités très prometteuses pour
d’autres investigations et applications, comme dans les jumeaux numériques. Il pour-
rait permettre d’incorporer des ensembles de données de capteurs supplémentaires,
d’améliorer la prédiction du comportement et du régime, tout en étant robuste au
bruit et agnostique au modèle.
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1 Introduction

1.1 Motivations and Outlines

Topological Data Analysis is the study of datasets based on their topological prop-
erties and invariants. It provides a robust and general framework to analyse data
without the need for an analytic ambient manifold. It relies on the characteriza-
tion of the data shapes, loops and holes, using tools for algebraic topology and
computational geometry.

To analyze how the data is shaped without the need for a metric space embed-
ding, the approach is to create geometrical objects known as filtrations. By covering
the data with simplices or spheres of different dimensions and scales, an approxima-
tion of the data cloud is obtained. The idea then is to see how the simplicial features
of different dimensions (points, segments, triangles, tetrahedrons ...) are distributed
across the scales, and how they appear and disappear (forming loops and holes). For
that purpose, the homology groups are introduced. It is an algebraic representation
of the relationships between the simplicial features. They are grouped into classes
representing chains of simplices, that we refer to as features. The persistent homol-
ogy allows then to track how these features are distributed scales and dimensions,
associating to each a birth and a death scale, representing the scale at which the
element has appeared and disappeared.

To summarize the information of the persistent homology, the features are grouped
according to their dimensions and lifetime, following the homology groups represen-
tation. They can then be summarized using a collection of descriptors such as the
persistence diagrams and barcodes. It is a representation in 2D coordinates of the
birth and death of the features. More advanced representations can then be com-
puted such as the persistence images, kernels, entropy and landscapes.

The purpose of these persistence descriptors is to have measurable objects, that
can be used to compute statistics. The optimal transport is an ideal framework to
do so, allowing to define robust metrics on the persistence representations. It is then
possible to incorporate those computed statistics and representations into machine
learning models describing the underlying physical system.

The need for a general data driven approach has become more acute with the
multiplication of the data sources, the ever growing volume of big data available,
and the interdisciplinary nature of the new engineering issues.

Our methodology presented here, relies on a general framework of persistent
homology computation. We consider the data cloud as finite discretization of the
physical system, and compute the associated and most adapted filtration, taking
into account the nature of the data, the dimensionality and the targeted quantities
of interest. We then proceed to compute the persistence descriptors, along with
the adapted metrics, statistics and optimal transport. The output can finally be
integrated in a learning process, for clustering, classification, and regression.

We will address four applications of topological data analysis:

• Advanced Parametric Modes Clustering [3] in Chapter 2
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• Tape Surfaces Characterization [1] in Chapter 3

• Advanced Driver-Assistance Systems [2] in Chapter 4

• Monitoring and Anticipating Robots Functioning Behaviors [4] in Chapter 5

1.1.1 Advanced Parametric Modes Clustering

Modal analysis is widely used for addressing NVH –Noise, Vibration and Hardness–
in automotive engineering. The so-called principal modes constitutes an orthogonal
basis, obtained from the eigenvectors related to the dynamical problem. When this
basis is used for expressing the displacement field of a dynamical problem, the model
equations become uncoupled. Moreover, a reduced basis can be defined according
to the eigenvalues magnitude, leading to an uncoupled reduced model, specially
appealing when solving large dynamical systems. However, engineering looks for
optimal designs and therefore it focuses on parametric designs needing the efficient
solution of parametric dynamical models. Solving parametrized eigenproblems re-
mains a tricky issue, and therefore, non-intrusive approaches are privileged. In that
framework, a reduced basis consisting of the most significant eigenmodes is retained
for each choice of the model parameters under consideration. Then, one is tempted
to create a parametric reduced basis, by simply expressing the reduced basis para-
metrically by using an appropriate regression technique. However an issue remains,
that limits the direct application of the just referred approach, the one related to
the basis ordering. In order to order the modes before interpolating them, different
techniques were proposed in the past, being the Modal Assurance Criterion –MAC–
one of the most widely used. We propose an alternative technique that instead of
operating at the eigenmodes level, classify the modes with respect to the deformed
structure shapes that the eigenmodes induce.

The main limitation of modal analysis is the lack of validity the reduced basis
in the case of parametric models. For parametrized dynamical systems, the model
matrices will depends on those parameters, and solving parametric eigenproblems
remains a tricky issue.

When one is not really interested in the transient regime, but much more in the
forced regime, harmonic analysis represents a valuable route. The so-called Proper
Generalized Decomposition—PGD— enables considering the frequency as a model
extra-parameter as well as addressing general (non-proportional) damping and non-
linear dynamics, under the stringent real-time constraint, with even the inclusion of
model parameters as extra-coordinates [18, 17, 20].

However, certain applications need accurate transient responses, and in that
case the formulation and solution of the dynamical problem in the time domain is
retained.

For that purpose, one the most widely used techniques is modal analysis. Other
than the benefits in the time integration, due to the dynamical system decoupling,
the eigenmodes benefit from a physical interpretation, of great interest for the de-
signer or structural analyst. Still, when considering parametric models as it is always
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the case during the design stage, when the material and geometry are not totally
defined, the dynamical modes depends on those parameters as previously discussed.
Having a surrogate model expressing the parametric evolution of the eigenmodes is
of great interest. Constructing those surrogate models is nowadays quite mature,
by using usual and advanced nonlinear regressions [19], the last making use of spar-
sity and appropriate regularisation for operating in high-dimensional settings, while
keeping as reduced as possible the number of data (eigenproblems solution), and
leading to rich enough (nonlinear) regressions while avoiding overfitting. Here the
trickiest issue is not the regression construction, but the fact of ordering the differ-
ent eigenmodes involved in the modal basis for each parameters choice, in order to
created N clusters (or less in the reduced case), and putting in each one a mode of
each modal basis, such that modes in each cluster remain close (in a certain met-
rics). The main issue remains the metric to be use to successfully and efficiently
accomplishing such clustering. In general such clustering is performed by operating
at the level of the eigenmodes, in the associated vector space, by using for example
the Modal Assurance Criterion—MAC— [52] that proceed comparing the modes
resulting from each eigenproblem, by using the usual scalar product (modes similar
to a given one should remain quite collinear).

When operating in high dimensional parametric spaces, sparsely sampled, the
matrices involved in the resulting eigenproblem can vary a lot from one choice of the
parameters to another, and consequently the scalar product criterion at the basis
of the MAC could fail. On the other hand, the fact of proceeding in a vector space
needs to carefully address the expression of the different modes by considering the
same frame for all the analyzed mechanical systems.

For alleviating those difficulties, we propose an alternative technique that instead
of operating at the eigenmodes level, classify the modes with respect to the deformed
structures shape that the eigenmodes produce, taking advantage from the invariance
property of topology. Thus, we are employing a metric able to compare shapes, more
that a metric for comparing the vectors (eigenmodes) that produced those shapes,
the last being more intrinsic and inheriting invariance features. Moreover, in the
present case study, eigenmodes are heterogeneous in the sense that they involve
displacements and rotations, whereas the associated deformed surfaces are purely
geometrical.

In Chapter 2, we address the classification of a series of modal basis related to
the eigenmodes of a thin structure equipped with a mesh consisting of shell elements,
with displacement and rotation degrees of freedom at each node of the mesh.

The thickness of the structural part varies, with its consequent effect on the mass
and stiffness matrices (damping is assumed proportional) and consequently on the
eigenvalues and eigenvectors, the former defining the number of modes to be retained
in the reduced basis. In the present study, the six rigid modes representing the whole
structure translation (three modes) and rotation (three modes) will be discarded and
among the remaining pairs eigenvalue-eigenvector, the most relevant six eigenvectors
(corresponding to the six highest eigenvalues) retained in the reduced basis related
to each choice of the model parameter (the thickness).
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These six modes related to each structure (related to a thickness value) define a
reduced basis that one would like render parametric. However, prior to construct a
regression able to define the reduced basis for each possible choice of the parameter
(thickness) one should classify the six eigenmodes of each reduced basis associated
to each structure, into six clusters.

This task is compulsory to facilitate the interpolation in the parametric space and
also to attach a physical sense to those modes. One could imagine that for a given
thickness the most relevant deformation mode could be related to the extension
whereas for another choice of the thickness the most relevant deformation mode
could be the bending. In such a case, one prefers create a cluster grouping similar
deformation modes, to evaluate how each of them depends from the parameter
from one side, and from the other to facilitate the subsequent construction of the
parametric modal reduced basis.

To preform such a clustering, we must employ an appropriate metric to compare
those modes. In general this comparison was traditionally performed by comparing
the eigenmodes within the vector space to which they belongs. In the present work,
as announced previously, we prefer applying the deformation mode to the reference
(undeformed) structure, that is, applying the eigenmode at the nodes location in
the reference structure for obtaining the deformed structure related to each mode
of each structure configuration (thickness) and then cluster the resulting deformed
structures with respect to their shape.

1.1.2 Tape Surfaces Characterization

Among composite forming processes for manufacturing structural parts based on
the consolidation of pre-impregnated preforms, e.g., sheets, tapes, .... the auto-
mated tape placement (ATP) appears as one of the most interesting techniques due
to its versatility and its in-situ consolidation, thus avoiding the use of autoclave.
In particular, to obtain the cohesion of two thermoplastic layers two specific phys-
ical conditions are needed (a) an almost perfect contact (intimate contact) and (b)
a temperature enabling molecular diffusion within the process time window, while
avoiding thermal degradation. To reach this goal, a tape is placed and progressively
bonded to the substrate consisting of the tapes previously laid-up. Due to the low
thermal conductivity of usual resins, an intense local heating is usually considered
(laser, gas torches, etc.) in conjunction with a local pressure applied by a moving
roller. Thus, the two main factors to ensure the intimate contact at the plies sur-
faces are pressure and heat. Intimate contact is required to promote the molecular
diffusion. In this process heat plays a double role, on one hand it enhances molecu-
lar mobility and on the other hand, the decrease of the material viscosity with the
temperature increase, facilitates the squeeze flow of the heated asperities located on
the ply surfaces under the compression applied by the consolidation roller.

The numerical model of ATP was introduced in [6] by using the so-called Proper
Generalized Decomposition (PGD) [7, 8, 9, 10, 12]. The separated representation
involved in the PGD enables the 3D high-resolution solution of models defined in
degenerated domains where at least one of their characteristic dimensions remains
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much smaller than the others and also constructing solutions of parametric models
where the model parameters are considered as extra-coordinates [11, 13].

Physical modelling and simulation for Automated Tape Placement (ATP) have
been proposed in [14] to study the influence of material and process parameters,
while consolidation modelling and sPGD-based non-linear regression have been used
in [15] to identify the main surface descriptors for a comprehensive characterization
of the tape surfaces.

In Chapter 3, we first revisit the consolidation modeling and its high resolution
simulation, enabling the evaluation of the time evolution of the degree of intimate
contact –DIC– when two rough surfaces are put in contact, heated and compressed.
The roughness squeezing mainly occurs along the transverse direction (the one re-
lated to the tape width) induced by the roller compression. Thus, the flow occurs in
the transverse section in which the surface reduces to a one-dimensional curve (the
so-called surface profile).

It is well-known at an experimental level that the consolidation degree strongly
depends on the surface characteristics (roughness). In particular, same process pa-
rameters applied to different surfaces produce very different degrees of intimate
contact. It allows us to think that the surface topology plays an important role
along this process. However, solving the physics-based models for simulating the
roughness squeezing occurring at the tapes interface represents a computational ef-
fort incompatible with online process control purposes. An alternative approach
consists of taking a population of different tapes, with different surfaces, and simu-
lating the consolidation for evaluating for each one the progression of the degree of
intimate contact –DIC– while compressing the heated tapes, until reaching its final
value at the end of the compression. The final goal is creating a regression able to
assign a final value of the DIC to any surface, enabling online process control. The
main issue of such an approach is the rough surface description, that is, the most
precise and compact way of describing it from some appropriate parameters easy to
extract experimentally, to be included in the just referred regression.

In order to extract a concise and complete description of the rough surfaces, we
use a topological description [27, 28, 29, 26] of the surface profiles, to construct de-
scriptors such as the persistence diagrams and images. Then, the persistence images
are considered for classifying surfaces, or as descriptors involved in the regression re-
lating them to the final DIC reached in the consolidation process, enabling real-time
decision making.

1.1.3 Advanced Driver-Assistance Systems

While there have recently been considerable advances in self-driving car technol-
ogy, driving still relies mainly on human factors. Even in self-driving mode, human
drivers must often make decision in a fraction of a second to avoid accidents. There-
fore, it is still of utmost importance to develop systems capable of discerning if the
human driver is attentive or not to the road conditions. In general, the so-called
advanced driver assistance systems (ADAS) [55, 56] are systems that are able to
improve the driver’s performance, among which, adaptive speed limiters, pedestrian
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detectors [57], and cruise controllers are some of the most popular systems. Fatigue
alerting systems are among the most useful among ADAS systems, and the aim of
this work is to contribute to the development of such a system based on a systematic
analysis of drivers in actual driving conditions.

The estimation of the driver’s condition (degree of attention to the road, fatigue,
etc.) is a very important factor to ensure safety in driving [58, 59]. A recent review
on the topic can be found in [60].

In Chapter 4, we aim to extract behavior patterns from car user data to be
able to accurately estimate their state. We use experimental data, gathered while
applying mechanical stimulation to people seated in an automobile.

Our main goal is to extract patterns of behavior from the data to allow us to
learn the most relevant factors affecting driver’s attention to the situation of the
road.

We combine some tools from Morse theory [35] and topological data analysis
(TDA) with all of the associated concepts and methods (e.g., Betti numbers, homol-
ogy persistence, barcodes, persistence images, etc.) [34], most of them introduced
and employed later in order to analyze and classify the experimental data. This al-
lows us to introduce concepts as barcodes, that is, persistent and life-time diagrams
in a similar way to how they are used in persistent homology. Our main goal is to
predict car user behavior following a supervised approach [27]. Instead of consider-
ing an original sensor signal as the quantity of interest, we focus on its topological
features. In this sense, the framework proposed in this paper allows us to unveil the
true dimensionality of data or, in other words, the actual number of factors affecting
driver’s performance. Thus, we model a sensor signal as a dynamical system, and,
therefore, our approach seems to be better at describing its properties, or rather its
variations, such as extrema, patterns, and self-similarity, than other approaches.

We note that our approach is, in some senses, similar to that followed by Milnor
and Thurston [36] in the study of the combinatorial properties of dynamical systems
by combining tools from automata theory.

1.1.4 Monitoring and Anticipating Robots Functioning Behaviors

Autonomous robots follow a number of rules introduced into their controllers [61,
62, 63]. However, when they interact with the environment, small variations may
result in long-time unpredictable motion. This behavior is very usual in mechanics,
characterizing systems exhibiting deterministic chaos.

In the practical case addressed in Chapter 5, a weeder robot (usually a float
of them) is expected to cover a patch of a vineyard, in an optimal manner. Here,
“optimal manner” refers to the path-line that allows covering the whole patch in
a minimum time. However, the ground orography has a significant variability, as
well as the location of the grapes. Robots are aimed at colliding the grape foots in
order to remove the grass around, and then numerous collisions following different
directions are needed to ensure that all the grass around the grape foot is adequately
removed.
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All the practical variability (ground, grape location, grass distribution and size,
obstacles, ...) as well as the intrinsic sensibility of the dynamics to small variability in
the physical and operational conditions, makes it impossible to define a deterministic
robot trajectory. In these conditions, an almost random motion seems to be the most
valuable alternative.

In practice, to avoid under-performances characteristic of fully random motions,
that random motion operating at the local scale is combined with a more global de-
terministic planning that tries to better control the vineyard coverage by sequencing
the operation at the different local patches covering the whole domain.

We aim at analyzing the data collected from a robot operating in different patches
and under different conditions (with respect to the maintenance operations) in order
to identify the existence of patterns able to identify the particular patch in which
the robot operates, or to distinguish the different robot states with respect to the
maintenance operations.

Having a sort of QR-code or identity card of each robot, when it operates within
each patch, in a particular state (healthy or unhealthy), is of major relevance with re-
spect to the predictive or operational maintenance of robots or floats of autonomous
robots.

We analyze the collected data in order to extract the maximum information
that could serve for differentiating them, enabling unsupervised clustering and/or
supervised classification, prior to any action concerning modeling using adapted
regressions.

Using data clustering is almost straightforward, as soon as data is homogeneous
and quantitatively expressible using integer or real numbers, enabling boolean or
algebraic operations (addition, multiplication, ...). The interest of organizing data
in groups, in a supervised or unsupervised manner, is that it is assumed that data
belonging to a given group shares some qualities with the members of the group.

When proceeding in an unsupervised manner, the only information to group the
data consists of the distance among them. Data that remain close to each other are
expected to share some properties or behavior. This is the rationale considered in the
very popular k-means technique [64, 65]. However, the notion of proximity, leading
to the derived concept of similarity, needs for the definition of a metric for comparison
purposes. When data are well defined in a vector space, distances can be defined
and data can be compared accordingly. In the case of supervised classification one
is looking for the linear (or nonlinear) frontier separating the different groups on the
basis of a quality or property that drives the data clustering. In this last case, the
best frontier separating two groups of data is the one maximizing the distance of
the available data to the frontier, in order to maximize the separation robustness.
This is how support vector machine, SVM, works, for instance [66].

In both cases (supervised and unsupervised) the existence of a metric enabling
data comparison is assumed. However, very often data could be much more complex,
as for example when it concerns heterogeneous information, possibly categorical or
qualitative. This is for example the case when a manufactured part is described by
its identity card consisting of the name of the employee involved in the operation, the
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designation of the employed materials (some of them given by its commercial name),
the temperature of the oven in which the part was cured and the processing time. In
that case, comparing two parts becomes quite controversial if the employed metric
is not properly defined. In these circumstances, usually, metrics are learned from
the existing training data, as is the case when using decision trees (or its random
forest counterpart) [67, 68], code-to-vector [16] or neural networks [69].

The situation becomes even more extreme when data have a large and deep
topology content. This is the case for example of time series or images of rich
microstructures. These are usually encountered in material science when describ-
ing metamaterials (also called functional materials), or those exhibiting gradient of
properties or mesoscopic architectures. Thus, even in nominal conditions, time se-
ries will differ if they are compared from their respective values at each time instant.
That is, two time series, even when they describe the same system in similar con-
ditions, never match perfectly. Thus, they differ even if they resemble in a certain
metric that should be learned. For example, our electrocardiogram measured during
two consecutive minutes will exhibit a resemblance, but certainly both of them are
not identical, thus making a perfect match impossible. A small variation will create
a misalignment needing for metrics less sensible to these effects. The same rationale
applies when comparing two profiles of a rough surface, two images of a foam taken
in two close locations, ... they exhibit a resemblance even if they do not perfectly
match.

Thus, techniques aiming at aligning data were proposed. In the case of time-
series, Dynamic Time Warping, DTW [70, 71] has been successfully applied in many
domains. The theory of optimal transport arose as a response to similar issues [38].

Another route consists of renouncing to align the data, and focusing on extracting
the adequate, goal-oriented descriptors of these complex data, enabling comparison,
clustering, classification and modeling (from nonlinear regressions).

A first possibility consists of extracting the main statistical descriptors of time
series or images (moments, correlations, covariograms, ...) [72]. Sometimes, data
expressed in the usual space and time domains, are transformed into other spaces
where their manipulation is expected to be simpler, like Fourier, Laplace, DCT,
Wavelet, ... descriptions of data. The most valuable (in the sense given later)
descriptions seem to be those maximizing sparsity. These are widely considered
when using compressed sensing [24], because it represents a compact, concise and
complete way of representing data that seemed much more complex in the usual
physical space (space and time).

We consider this last route, while using a description based on the topology of
data, with the aim of classifying and also constructing robust regressions express-
ing properties or performance from the input data expressed from its topological
description.

When compared with our former developments, this addresses a new and complex
purpose: how the topology contained in the trajectory that an autonomous robot
follows in a cloudy environment (where interactions limits the predictability horizon)
can inform on the robot location (which patch into the whole vineyard) or the robot
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state (with respect to maintenance operations).

1.2 Preliminary Definitions and Results

Our approach is to define the tools and concepts needed for the topological data
analysis in a concise and sufficient way, with an emphasis on a vector space repre-
sentation of the homology operations.

In what follows we consider as data-set M a finite subset of points in R3.

1.2.1 Simplicial Filtration

In order to describe the geometry of a data-set M we first identify the geometrical
features associated with M:

• A vertex [xm] is generated by an individual point xm ∈M;

• A segment [xm,xn] joins two vertex [xm], [xn] ∈M

[xm,xn] :=
{
x ∈ R3 : x = λxm + (1− λ)xn where 0 ≤ λ ≤ 1

}
;

• A triangle is generated by three different vertex [xm], [xn], [xl] ∈ M, such
that xm − xn and xm − xl are linearly independent, and then:

[xm,xn,xl] :=
{
x ∈ R3 : x = λmxm + λnxn + λlxl

}
,

where λm, λn and λl are the barycentric coordinates, with λm + λn + λl = 1;

• A tetrahedron is generated by four different vertices [xm], [xn], [xl], [xp] ∈M,
such that xm − xn, xm − xl and xm − xp are linearly independent, and then:

[xm,xn,xl,xp] :=
{
x ∈ R3 : x = λmxm + λnxn + λlxl + λpxp

}
,

where λm, λn, λl and λp are the barycentric coordinates, with λm + λn + λl +
λp = 1.

More generally, a d-simplex is the smallest convex set of d+ 1 points, x0, . . . , xd
where x1 − x0, . . . , xd − x0 are linearly independent, as illustrated in Fig. 39.

The so-called simplicial complex S(M) is then a finite collection of sets that is
closed under the subset relation, i.e., if a ∈ A and b ⊂ a, then b ∈ A.

In order to perform algebraic operations on the elements of S(M), we define a
Removal Operator for higher dimensional simplices.

Definition 1. Given k = 1, 2 and for 0 ≤ i ≤ k the removal operator Ri removes the
i-th position elements of a k-simplex :

Ri([x0, x1 . . . , xk]) := [x0, . . . , xi−1, xi+1, . . . , xk].
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Figure 1: Simplices of different dimensions

In order to describe efficiently the elements of the filtration S(M) and map a set
of k-simplices to a set of k − 1-simplices, we construct a finite sequence of sets of
k-simplices, denoted by Sk(M) (k ≥ 0), obtained as follows.

Definition 2. Consider a finite three dimensional set M = {x0, x1, x2 . . .}.

• Sk(M) = ∅ for every k 6= 0, 1, 2; otherwise

• Set S0(M) := {[x] : x ∈M}, then the simplices in Sk(M) for each k = 1, 2 are
obtained from the simplices in Sk−1(M) taking into account the following two
properties:

(P1) for every σ ∈ Sk(M) it holds that Ri(σ) ∈ Sk−1(M) for 0 ≤ i ≤ k, and

(P2) if σ, γ are in Sk(M) and σ ∩ γ 6= ∅, then there exists 1 ≤ ` ≤ k such that
σ ∩ γ ∈ Sk−`(M).

As consequence of the above inductive construction of the simplices we provide
the following definition of the face of a simplex.

Definition 3. Let be σ ∈ Sk(M) for k = 1, 2. Then we will say that γ ∈ Sk−`(M)
for some 1 ≤ ` ≤ k is a face of σ if there exists a finite sequence α0α1 · · ·α`−1 ∈
{0, 1, . . . , k}` where αi 6= αj such that

γ =
(
Rα0 ◦ · · · ◦Rα`−1

)
(σ).

Since we consider that xi ∈ R3 for 1 ≤ i ≤ M, and that M is a surface, we
associate to our surface M three non-empty sets of simplices:

S(M) = {S0(M),S1(M),S2(M)},

recall that Sk(M) = ∅ ⊂ S(M), for every integer number k ∈ Z, k 6= 0, 1, 2. As we
will see below it will have some consequences. From the construction of S(M) the
following two properties holds.

(P3) Every face of a simplex σ ∈ S(M) is also in S(M).

(P4) Given σ, γ ∈ S(M) either σ ∩ γ = ∅ or σ ∩ γ is a face of σ and γ.
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1.2.2 Simplicial Homology

In order to perform geometric operations (like unions of simplices) at each k-level
and to describe the relationship between two consecutive levels (like cut the faces of
a simplex) we endow to each Sk(M) with an algebraic structure of vector space over
a finite field of scalars. To this end, we consider the finite field Z2 = {0,1}.

Definition 4. For 0 ≤ k ≤ 3 we introduce the vector space of formal series of k-
simplices with coefficients over the finite field Z2 as

Z2[Sk(M)] :=
{
σ : σ =

∑̀
i=1

ηi σi where η1, . . . , η` ∈ Z2 and σ1, . . . , σ` ∈ Sk(M)
}
.

Observe that if σ ∈ Sk(M) then we can identify this simplex with the formal
series also denoted by σ = 1σ ∈ Z2[Sk(M)]. In consequence,

σ + σ = 1σ + 1σ = 0,

because 1 + 1 = 0 in Z2. Thus, for a given σ1, . . . , σ` ∈ Sk(M) the formal series
σ = ∑`

i=1 ηi σi represents a union or a “packet” of k-simplices where ηi = 1 if the
k-simplex σi is in σ and ηi = 0 otherwise. For k ∈ Z, k 6= 0, 1, 2, 3 we have
Z2[Sk(M)] = Z2[∅] = {0} is the trivial vector space.

Example 1. Consider a surface M = (M,S(M)) given by the surface of a tetrahedron
defined by a set of points M = {x0, x1, x2, x3} ⊂ R3 (see Figure 2) and where

S2(M) = {[x1, x2, x3], [x0, x2, x3], [x0, x1, x3], [x0, x1, x2]},
S1(M) = {[x2, x3], [x1, x3], [x1, x2], [x0, x3], [x0, x2], [x0, x1]},
S0(M) = {[x0], [x1], [x2], [x3]}.

Now, we can identify Z2[S0(M)] ≡ Z4
2, by using

[x0] ≡ (1,0,0,0),
[x1] ≡ (0,1,0,0),
[x2] ≡ (0,0,1,0),
[x3] ≡ (0,0,0,1).

Now, we can identify Z2[S1(M)] ≡ Z6
2, where we identify

[x0, x1] ≡ (1,0,0,0,0,0),
[x0, x2] ≡ (0,1,0,0,0,0),
[x0, x3] ≡ (0,0,1,0,0,0),
[x1, x2] ≡ (0,0,0,1,0,0),
[x1, x3] ≡ (0,0,0,0,1,0),
[x2, x3] ≡ (0,0,0,0,0,1).

Finally, we have Z2[S2(M)] ≡ Z4
2.
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Figure 2: A tetrahedron defined by a set of points M = {x0, x1, x2, x3} ⊂ R3.

From now on, we identify Z2[Sk(M)] ≡ Z`k(M)
2 where `k(M) is the number of

elements in Sk(M) for each 0 ≤ k ≤ 2. In particular, `0(M) = M. Moreover

• For any integer number k we can endow each vector space Z`k(M)
2 with a to-

tal ordering. To this end for a given [xi0 , xi1 , . . . , xik ] ∈ Z`k(M)
2 where i0 <

i1 < . . . < ik we consider the lexicographical order of its index set i0i1 · · · ik ∈
{0, 1, . . . ,M}k. For example, consider the surface of a tetrahedron M = {x0, x1, x2, x3} ⊂
R3 as in Example 1, then in S2(M) we have

[x0, x1] < [x0, x2] < [x0, x3] < [x1, x2] < [x1, x3] < [x2, x3].

• If k = 1, 2 then we can extend the map Ri : Z`k(M)
2 −→ Z`k−1(M)

2 defined as

Ri

(∑`
j=1 ηj σj

)
= ∑`

j=1 ηj Ri(σj). Now, Ri is a linear map between vectors
spaces for 0 ≤ i ≤ k.

• Assume that σ, γ ∈ Z`k(M)
2 and σ ∩ γ = Ri(σ) = Ri(γ). Then

Ri(1σ + 1 γ) = 1Ri(σ) + 1Ri(γ) = 0,

because 1 + 1 = 0 in Z2.

Next, we associate an incidence matrix (defined by a linear map between vector
spaces) to each pair of consecutive levels (k− 1, k) as we show in the next example.

Example 2. Consider the surface M given in the Example 1. We can relate the
different homology levels by using matrices following the next strategy. In Table 1
the columns are in correspondence with the 1-simplices of M, the rows are in cor-
respondence with the 0-simplices and the entries are determined by incidence of a
1-simplex with its 0-simplex face. The result is a matrix 4×6 matrix with Z2 entries,
that is, a Z4×6

2 -matrix.
For the incidence matrix of 2-simplices against its 1-simplices considered as faces

the construction of the corresponding Z6×4
2 -matrix is explained in Table 2.
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[x0, x1] [x0, x2] [x0, x3] [x1, x2] [x1, x3] [x2, x3]
[x0] 1 1 1 0 0 0
[x1] 1 0 0 1 1 0
[x2] 0 1 0 1 0 1
[x3] 0 0 1 0 1 1

Table 1: The incidence matrix between the 1-level and the 0-level of M.

[x0, x1, x2] [x0, x1, x3] [x0, x2, x3] [x1, x2, x3]
[x0, x1] 1 1 0 0
[x0, x2] 1 0 1 0
[x0, x3] 0 1 1 0
[x1, x2] 1 0 0 1
[x1, x3] 0 1 0 1
[x2, x3] 0 0 1 1

Table 2: The incidence matrix between the 2-level and the 1-level of M.

The formal way to introduce the above matrices is the following.

Definition 5. For 1 ≤ k ≤ 2 we can define the following linear map between vector
spaces:

∂k−1,k : Z`k(M)
2 −→ Z`k−1(M)

2 ,

σ 7→ ∂k−1,k

(∑̀
i=1

ηi σi

)
=

k∑
j=0

Rj

(∑̀
i=1

ηi σi

)
.

This map uses the whole set {R0, R1, . . . , Rk} of remove the i-th position linear map
for 0 ≤ i ≤ k. Observe that for k = 0 we have

∂−1,0 : ZM2 −→ Z−1[S0(M)] = {0}, [x] 7→ 0,

the zero map, and also for k = 3

∂2,3 : Z2[S3(M)] = {0} −→ Z`2(M)
2 , 0 7→ 0,

we obtain the 0-map. Finally, we consider that ∂k−1,k = 0 for all integer k such that
k 6= 0, 1, 2.

To better understand the role of these maps, observe that if we have two simplices
[x0, x1, x2] and [x3, x4, x5] in Z`2(M)

2 without common faces then the union of both
is described under this algebraic framework by the sum [x0, x1, x2] + [x3, x4, x5] (see

Figure 3(a)). By using the map ∂1,2 we obtain its description in Z`0(M)
2 as

∂1,2([x0, x1, x2] + [x3, x4, x5]) = [x1, x2] + [x0, x2] + [x0, x1]
+ [x4, x5] + [x3, x5] + [x3, x4]
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That is, the sum of the six faces of the two simplices (see Figure 3(a)). They
represent the total number of faces in their union. However, if we consider the union
of two simplices [x0, x1, x2] and [x1, x2, x4] with a common face, R0([x0, x1, x2]) =
R2([x1, x2, x3]) = [x1, x2] (see Figure 3(b)), then its description in Z`0(M)

2 is now

∂1,2([x0, x1, x2] + [x1, x2, x3]) = [x1, x2] + [x0, x2] + [x0, x1]
+ [x2, x3] + [x1, x2] + [x1, x3]
= [x0, x2] + [x0, x1] + [x2, x3] + [x1, x3],

because [x1, x2] + [x1, x2] = 0. This fact implies that the union of both is now
described by the non-common four faces by forgetting the inner common face (see
Figure 3(b)).

Figure 3: In (a) we have the union [x0, x1, x2] + [x3, x4, x5] and in (b) [x0, x1, x2] +
[x1, x2, x3].

Example 3. Consider the surface M given in the Example 1. Then the operators
∂k−1,k acts over the set of k-simplices (0 ≤ k ≤ 3) as follows,

∂2,3 = 0,
∂1,2([x0, x1, x2]) = [x1, x2] + [x0, x2] + [x0, x1],

∂0,1([x0, x1]) = [x0] + [x1],
∂−1,0 = 0.
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Moreover, the matrices associated to the linear maps ∂0,1 and ∂1,2 are

∂0,1 =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 and ∂1,2 =



1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1


.

It is not difficult to see that the matrix product ∂0,1 · ∂1,2 is the zero matrix. Then
the vector space generated by the columns of the matrix ∂1,2, denoted by Col ∂1,2, is
contained in the vector space, denoted by Nul ∂0,1, defined by the solutions of the
homogeneous linear system


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1





α
β
γ
δ
ν
η


=


0
0
0
0

 .

Thus, we have the following subspaces Col ∂1,2 ⊂ Nul ∂0,1 ⊂ Z6
2. In a simlar way we

have that Col ∂3,2 = {0} ⊂ Nul ∂1,2 ⊂ Z4
2 and Col ∂0,1 ⊂ Nul ∂−1,0 = Z4

2.

Lemma 1. For all 0 ≤ k ≤ 3:

∂k−1,k · ∂k,k+1 = 0

Proof. Indeed, it is true for all integer number k, if we introduce the 0 map as

∂2,3 : Z2[S3(M)] = {0} −→ Z2[S2(M)]

This property means that the linear subspace

Col ∂k,k+1 ⊂ Z`k(M)
2

generated by the columns of the matrix ∂k,k+1 is contained in the linear subspace

Nul ∂k−1,k :=
{
σ ∈ Z`k(M)

2 : ∂k−1,k σ = 0
}
.

of the solution of the homogeneous linear system with matrix ∂k−1,k. From the
rank-nullity theorem, we known that

`k(M) = dim Nul ∂k−1,k + dim Col ∂k−1,k.

In particular, Nul ∂−1,0 = ZM2 and Col ∂2,3 = Col 0 = {0} is the trivial subspace.

It allows us to introduce the vector space of k-features of M.
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Definition 6 (Homology Groups). Consider a finite three dimensional set M =
{x0, x1, x2 . . .}. The k-th Homology Group of M.

Hk(M) := Nul ∂k−1,k/Col ∂k,k+1,

where

dimHk(M) = dim Nul ∂k−1,k − dim Col ∂k,k+1

= `k(M)− dim Col ∂k−1,k − dim Col ∂k,k+1.

In particular,
H0(M) = Nul ∂−1,0/Col ∂0,1 = ZM2 /Col ∂0,1,

and
H2(M) = Nul ∂1,2/{0} = Nul ∂1,2.

Moreover, Hk(M) = {0} for all integer k 6= 0, 1, 2.

Proposition 1. The elements in Hk(M) are equivalence classes σ obtained from

elements σ ∈ Z`k(M)
2 satisfying that ∂k−1,k σ = 0 and where each equivalence class is

defined by a set

σ :=
{
γ ∈ Nul ∂k−1,k : γ = σ + ∂k,k+1(δ) for some δ ∈ Z`k+1(M)

2

}
.

Observe, that a k-feature σ ∈ Hk(M) is a ”packet” of simplices σ that share
its faces, that is ∂k−1,k(σ) = 0 (and it can be seen as a connected component of
the intersection of M with a k-dimensional linear subspace of R3), plus the vector
subspace Col ∂k,k+1. Since Hk(M) is a vector space it is possible to find a basis of
βk(M) := dimHk(M)-vectors (or k-features).

Proposition 2. There exists σ1, . . . ,σβk(M) linear independent vectors in Hk(M) such
that it generates the whole vector space, that is,

Hk(M) = span{σ1, . . . ,σβk(M)}.

Moreover, we can easily extend the order relation of the vectors is Z`k(M)
2 to the

vectors in Hk(M), and hence we will assume that the basis vector is ordered as
follows σ1 < · · · < σ

βk(M) . This basis vector (or k-features) characterizes the k-th
homological group associated to M.

Proposition 3. Each γ ∈ Hk(M) can be written as γ = ∑βk(M)
`=1 ξ`σ` where ξ` ∈ Z2

for 1 ≤ ` ≤ βk(M).
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1.2.3 Persistent Homology

A filtration of the simplicial complex S(M) is a nested sequence of subcomplexes
starting at the empty set and ending with the full simplicial complex

∅ ⊂ K0 ⊂ · · · ⊂ K = S(M).

It is constructed as an approximation of S(M) which usually is computationally
intractable.

Given a non decreasing finite sequence (ri)ni=0, n > 1, we can construct the
nested non decreasing sequence of sets representing the filtration of S(M). For a
given r = rj, 0 ≤ j ≤ n we have

Sr(M) := {S(0)
r (M), S(1)

r (M), S(2)
r (M)} ⊂ S(M)

Proceeding in a similar way as previously we can construct vector spaces over
the finite field Z2 obtaining

Z2[S(0)
r (M)] = Z2[S0(M)] ≡ ZM2 ,

and for k ≥ 1 we have that Z2[S(k)
r (M)] ≡ Z`k,r(M)

2 ⊂ Z2[Sk(M)] ≡ Z`k(M)
2 is a linear

subspace that depends on α > 0, for k ≥ 1. Moreover, we have a vector space

Hk,r(M) := Nul ∂rk−1,k/Col ∂rk,k+1

of dimension βk,r(M) := dimHk,r(M), for each integer number k. In particular,
H0,r(M) = ZM2 /Col ∂r0,1, and H2,r(M) = Ker∂r1,2. Also, Hk,r(M) = {0} for every
integer number k 6= 0, 1, 2, 3. Thus, we only need to compute

H0,r(M) = ZM2 /Col ∂r0,1,
H1,r(M) = Nul ∂r0,1/Col ∂r1,2,
H2,r(M) = Ker∂r1,2

for each r > 0. In a similar way as above, we have a basis for each of this three
vector spaces (representative k-features at r-scale), namely

Hk,r(M) = span
{
σ1, . . . ,σβk,r(M)

}
,

for k = 0, 1, 2.

To determine if two surfaces are similarly homological at scale, we can study the
behaviour of the basis functions of the vector spaces Hk,r(M) depending on r. To
this end, we introduce the notion of birth and death point of a k-basis vector at
α-scale γ ∈ Hk,r(M) as follows.

Definition 7. The birth point ak(γ) and death point bk(γ) of a k-feature at r-scale
γ ∈ Hk,r(M) are defined by

ak(γ) = inf {r > 0 : γ ∈ Hk,r(M)}
bk(γ) = sup {r > 0 : γ ∈ Hk,r(M)}

32



For each k = 0, 1, . . . and j = 1, 2, . . . ,m fixed we have

Hk,rj(M) = span
{
γ1, . . . ,γ

β
(j)
k

}
,

LetNk (0 ≤ k ≤ 2) be the number of vectors in the set
{
γ ∈ Hk,rj(M) : for some 1 ≤ j ≤ m

}
that can be ordered as

γ1 < γ2 < · · · < γNk .

Each k-feature γυ (1 ≤ υ ≤ Nk) can be represented over the R2 plan as a single

point with coordinates (a(υ)
k , b

(υ)
k ) where

a
(υ)
k = ak(γυ) = min

0≤j≤m

{
rj : γυ ∈ Hk,rj(M)

}
,

b
(υ)
k = bk(γυ) = max

0≤j≤m

{
rj : γυ ∈ Hk,rj(M)

}
The finite collection of points obtained from the k-features is called a Persistence

Diagram at k-level. The k-level Persistence Diagram associated to the partition
P := {rj}mj=1 is given by:

PDk(M,P) :=
{

(a(υ)
k , b

(υ)
k ) : 1 ≤ υ ≤ Nk

}
for k = 0, 1, 2.

Definition 8. Given a surface M and a partition P, we define its set of persistence
diagrams noted PD as:

PD = {PD0(M,P),PD1(M,P),PD2(M,P)}
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2 Advanced Parametric Modes Clustering

In this chapter, we propose the use of a topological metric based on the persistent
homology, enabling efficient surfaces classification, and ordering the elastodynamics
eigenmodes to construct parametric reduced bases.

2.1 Introduction

Modal analysis is widely used for addressing NVH –Noise, Vibration and Hardness–
in automotive engineering. The so-called principal modes constitutes an orthogonal
basis, obtained from the eigenvectors related to the dynamical problem. When this
basis is used for expressing the displacement field of a dynamical problem, the model
equations become uncoupled. Moreover, a reduced basis can be defined according
to the eigenvalues magnitude, leading to an uncoupled reduced model, specially
appealing when solving large dynamical systems. However, engineering looks for
optimal designs and therefore it focuses on parametric designs needing the efficient
solution of parametric dynamical models. Solving parametrized eigenproblems re-
mains a tricky issue, and therefore, non-intrusive approaches are privileged. In that
framework, a reduced basis consisting of the most significant eigenmodes is retained
for each choice of the model parameters under consideration. Then, one is tempted
to create a parametric reduced basis, by simply expressing the reduced basis para-
metrically by using an appropriate regression technique. However an issue remains,
that limits the direct application of the just referred approach, the one related to
the basis ordering. In order to order the modes before interpolating them, different
techniques were proposed in the past, being the Modal Assurance Criterion –MAC–
one of the most widely used. We propose an alternative technique that instead of
operating at the eigenmodes level, classify the modes with respect to the deformed
structure shapes that the eigenmodes induce.

Linear structural solid dynamics [50] expressed in the time domain results in the
linear system of second order ordinary differential equations

M
d2U(t)
dt2

+ C
dU(t)
dt

+ KU(t) = F(t), (1)

with the mass, damping and stiffness matrices given by M, C and K respectively,
U the vector that contains the nodal displacements and F the applied nodal forces.
Its time integration can be performed by using any well experienced state of the art
discretization technique, as [51] or [49].

In what follows we will omit the damping term, that results from the fact of
assuming a proportional damping, that expresses it as a combination of the mass
and stiffness contributions.

To enhance the integration efficiency, mass lumping is usually considered, leading
to a mass diagonal matrix. Model analysis looks also for enhancing the solution
efficiency by decoupling the motion equation. For that purpose, the last extracts
the basis {φ1, φ2, . . . , φN} (N being the problem size, i.e. the number of degrees of
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freedom) by solving the eigenproblem(
−ω2M + K

)
φ = 0, (2)

associated with the dynamical problem expressed in the Fourier space,(
−ω2M + K

)
U = F , (3)

where U and F refer to the Fourier transform of the nodal displacement U and
forces F.

The eigenmodes φi, i = 1, · · · , N define an orthogonal basis, normalized with
respect to the mass matrix, i.e.

φTi Mφj = δij, (4)

with δ the Kroenecker delta, and

φTi Kφj = κiδij. (5)

With P the matrix composed by the eigenmodes, i.e. P = (φ1, · · · , φN), the
matrix form of the previous expressions read PTMP = I and PTKP = K, with I
the identity matrix and K the diagonal matrix with entries Kii = κi.

In the modal basis U = Pϕ, and the dynamical problem reads

I
d2ϕ(t)
dt2

+ Kϕ(t) = PTF(t), (6)

that constitutes a system of N uncoupled second order ordinary differential equations.
The main limitation of modal analysis is the lack of validity of such basis in the

case of parametric models. In the case of parametrized dynamical systems, with the
model parameters grouped in vector µ, the model matrices will depends on those
parameters, i.e. M(µ) and K(µ). The solution of parametric eigenproblems remains
a tricky issue.

When one is not really interested in the transient regime, but much more in the
forced regime, harmonic analysis represents a valuable route. The so-called Proper
Generalized Decomposition—PGD— enables considering the frequency as a model
extra-parameter as well as addressing general (non-proportional) damping and non-
linear dynamics, under the stringent real-time constraint, with even the inclusion of
model parameters as extra-coordinates [18, 17, 20].

However, certain applications need accurate transient responses, and in that
case the formulation and solution of the dynamical problem in the time domain is
retained. Three routes are usually considered:

1. The previously referred mass lumping that transforms the so-called consistent
mass matrix into its diagonal counterpart, facilitating an explicit integration;
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2. In the context of model order reduction—MOR—, a Proper Orthogonal Decomposition—
POD— based reduced order modeling operating in the time domain has been
proposed in [48]. Ladeveze and coworkers proposed an extension of their ra-
dial approximation [46] for addressing mid-frequency dynamics, the so called
variational theory of complex rays [47]. A PGD formulation for construct-
ing a parametric transfer function has been considered [21], allowing efficient
solutions of transient dynamics operating in the time-domain. On the other
hand, the separation of variables, at the heart of PGD [5], was extensively em-
ployed in the harmonic domain for solving multi-parametric dynamics, and was
successfully extended to the non-linear case, and then combined with modal
analysis [18, 17, 20].

3. Modal analysis is one the most widely used techniques for solving dynamical
problems. Other than the benefits in the time integration, due to the dynam-
ical system decoupling, the eigenmodes benefit of a physical interpretation, of
great interest for the designer or structural analyst. However, when consider-
ing parametric models as it is always the case during the design stage, when
the material and geometry are not totally defined, the dynamical modes de-
pends on those parameters as previously discussed. Having a surrogate model
expressing the parametric evolution of the eigenmodes is of great interest. Con-
structing those surrogate models is nowadays quite mature, by using usual and
advanced nonlinear regressions [19], the last making use of sparsity and appro-
priate regularisation for operating in high-dimensional settings, while keeping
as reduced as possible the number of data (eigenproblems solution), and lead-
ing to rich enough (nonlinear) regressions while avoiding overfitting. Here the
trickiest issue is not the regression construction, but the fact of ordering the
different eigenmodes involved in the modal basis for each parameters choice,
in order to created N clusters (or less in the reduced case), and putting in each
one a mode of each modal basis, such that modes in each cluster remain close
(in a certain metrics). The main issue remains the metric to be use to success-
fully and efficiently accomplishing such clustering. In general such clustering
is performed by operating at the level of the eigenmodes, in the associated
vector space, by using for example the Modal Assurance Criterion—MAC—
[52] that proceed comparing the modes resulting from each eigenproblem, by
using the usual scalar product (modes similar to a given one should remain
quite collinear).

We will focuses on the techniques based on modal analysis. As just described,
usual techniques operate at the eignemodes level, defined in a vector space. When
operating in high dimensional parametric spaces, sparsely sampled, the matrices
involved in the resulting eigenproblem can vary a lot from one choice of the param-
eters to another, and consequently the scalar product criterion at the basis of the
MAC could fail. On the other hand, the fact of proceeding in a vector space needs
to carefully address the expression of the different modes by considering the same
frame for all the analyzed mechanical systems.
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For alleviating those difficulties, we propose an alternative technique that instead
of operating at the eigenmodes level, classify the modes with respect to the deformed
structures shape that the eigenmodes produce, taking advantage from the invariance
property of topology. Thus, we are employing a metric able to compare shapes, more
that a metric for comparing the vectors (eigenmodes) that produced those shapes,
the last being more intrinsic and inheriting invariance features. Moreover, in the
present case study, eigenmodes are heterogeneous in the sense that they involve
displacements and rotations, whereas the associated deformed surfaces are purely
geometrical.

2.2 Methodology

Here, we address the classification of a series of modal basis related to the eigen-
modes of a thin structure equipped with a mesh consisting of shell elements, with
displacement and rotation degrees of freedom at each node of the mesh.

The thickness of the structural part varies, with its consequent effect on the mass
and stiffness matrices (damping is assumed proportional) and consequently on the
eigenvalues and eigenvectors, the former defining the number of modes to be retained
in the reduced basis. In the present study, the six rigid modes representing the whole
structure translation (three modes) and rotation (three modes) will be discarded and
among the remaining pairs eigenvalue-eigenvector, the most relevant six eigenvectors
(corresponding to the six highest eigenvalues) retained in the reduced basis related
to each choice of the model parameter (the thickness).

These six modes related to each structure (related to a thickness value) define a
reduced basis that one would like render parametric. However, prior to construct a
regression able to define the reduced basis for each possible choice of the parameter
(thickness) one should classify the six eigenmodes of each reduced basis associated
to each structure, into six clusters.

This task is compulsory to facilitate the interpolation in the parametric space and
also to attach a physical sense to those modes. One could imagine that for a given
thickness the most relevant deformation mode could be related to the extension
whereas for another choice of the thickness the most relevant deformation mode
could be the bending. In such a case, one prefers create a cluster grouping similar
deformation modes, to evaluate how each of them depends from the parameter
from one side, and from the other to facilitate the subsequent construction of the
parametric modal reduced basis.

To preform such a clustering, we must employ an appropriate metric to compare
those modes. In general this comparison was traditionally performed by comparing
the eigenmodes within the vector space to which they belongs. In the present work,
as announced previously, we prefer applying the deformation mode to the reference
(undeformed) structure, that is, applying the eigenmode at the nodes location in
the reference structure for obtaining the deformed structure related to each mode
of each structure configuration (thickness) and then cluster the resulting deformed
structures with respect to their shape.

37



In the remaining part of the present section we will described the available data
and its organization, and then, all the concepts enabling the use of a metric applying
on the shapes, based on the employ of persistent homology, at the heart of the TDA.

2.3 Data description

As the different analyzed structures are shells of different thicknesses, from now
on we will describe these structures by their surfaces, each equipped of a nodes
distribution and the associated mesh.

In this study we consider a collection of M = 102 surfaces corresponding to the
effect of a given deformation mode on the reference undeformed surface, as Fig. 4
shows.

Figure 4: Reference undeformed structure (left) and its deformed counterpart (right)
when a given deformation mode applied on the reference one

Each surface Mr, r = 1, . . . ,M, is equipped with a mesh associated with N =
3636 nodes, each node described by xn ≡ (xn, yn, zn), n = 1, . . . ,N and xn ∈ R3, all
them making user of the same common coordinates frame.

The deformed structures consists of the nodes and elements resulting from the
reference one by applying the associated deformation mode. There is neither nodes
redistribution nor refinement in the deformed surfaces. Figure 5 depicts the reference
surface and the nodes distribution on it, from which all the deformed structures with
their associated nodal distribution and deformed mesh will result. It is important
to note that the undeformed and deformed meshes (elements connectivity) remain
unchanged facilitating the use of the proposed metrics discussed later.

TheM = 102 surfaces are associated to 17 different structures, each one of them
having a different thickness, with the consequent effect on the mass and stiffness
matrices, and therefore on the resulting eigenfrequencies and eigenmodes. For each
of the 17 structures, the 6 most significant deformation modes (related to the six
highest eigenvalues with the rigid modes excluded) are retained. As mentioned, by
applying this 17×6 deformation modes to the original undeformed reference surface,
the M = 102 deformed surfaces result.

The data, is structured as a table, with in each row the six deformation modes

38



Figure 5: Reference surface (left) and nodes distribution on it (right)

related to a given structure (with its own thickness), as follows

M1 M2 M3 M4 M5 M6
M7 M8 M9 M10 M11 M12
. . . . . . . . . . . . . . . . . .
M97 M98 M99 M100 M101 M102

Our main aim in what follows is ordering the elements in the columns, such that
each column will represent a similar deformation behavior.

2.4 On the surface topology

Consider a data-set M related to a given deformed surface defined from its N nodes,
all them in R3. We are interested in extracting the geometric features of M and how
they are distributed across the different spatial scales.

2.4.1 Geometric features

In order to describe the geometry of the data-set M we first identify four types of
geometrical features associated with M:

• A vertex [xm] is generated by an individual point xm ∈M;

• A segment [xm,xn] joins two vertex [xm], [xn] ∈M

[xm,xn] :=
{
x ∈ R3 : x = λxm + (1− λ)xn where 0 ≤ λ ≤ 1

}
;

• A triangle is generated by three different vertex [xm], [xn], [xl] ∈ M, such
that xm − xn and xm − xl are linearly independent, and then:

[xm,xn,xl] :=
{
x ∈ R3 : x = λmxm + λnxn + λlxl

}
,

where λm, λn and λl are the barycentric coordinates, with λm + λn + λl = 1;
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• A tetrahedron is generated by four different vertices [xm], [xn], [xl], [xp] ∈M,
such that xm − xn, xm − xl and xm − xp are linearly independent, and then:

[xm,xn,xl,xp] :=
{
x ∈ R3 : x = λmxm + λnxn + λlxl + λpxp

}
,

where λm, λn, λl and λp are the barycentric coordinates, with λm + λn + λl +
λp = 1.

The vertices represent the dimension-0 features, segments the dimension-1 features,
triangles the dimension-2 features and tetrahedron dimension-3 features.

2.4.2 Features filtration

To describe the appearance and disappearance of the features of M across different
scales, we consider the so-called Alpha Filtration. For that purpose an interval
[αmin, αmax] is considered. It reflects the smallest features scale, in our case αmin = 0
(the vertex) and the largest one αmax representing the largest distance between
points of M.

The features of M considered here are elements of the Simplicial complex asso-
ciated to M, noted S(M), and constructed from the finite cells of the the Delaunay
Triangulation of the set of points in M. The elements of S(M) are the geometric
features of M i.e. tetrahedrons, triangles, edges and vertices.

In order to describe efficiently the elements of the Simplicial complex S(M), and
map a set of d-dimensional simplices to a set of (d − 1)-dimensional simplices, we
construct a finite sequence of sets of d-dimensional simplices, denoted by Sd(M),
d = 0, 1, 2, 3.

Set S0(M) := {[xm] : xm ∈ M}, then the simplices in Sd(M) for each d = 1, 2, 3
are obtained from the simplices in Sd−1(M) taking into account the following two
properties:

1. For every simplex in Sd(M), the (d − 1)-dimensional simplices forming it are
in Sd−1(M) (e.g. a triangle is in S2(M) and its three edges are in S1(M));

2. If two simplices in Sd(M) have a common element σ, then there exists 0 ≤ l ≤
(d− 1) such that σ ∈ Sl(M).

Given the scale values (αj)mj=0, the Alpha Filtration is then a non decreasing se-
quences describing the evolution of the features of the simplicial complex S(M) at
each scale αj, and computed as follows:

• First, the filtration value of each tetrahedron is computed as the circumradius
of the tetrahedron if its circumsphere is empty, and as the minimum of the
filtration values of the triangles that are within the circumsphere otherwise.

• Similarly, the filtration value of each triangle is computed as the circumradius
of the triangle if the circumcircle is empty, and as the minimum of the filtration
values of the segments that are within the circumcircle otherwise.
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• Then, the filtration value of each segment is computed as its circumradius.

• Finally, the filtration value of the vertices is set to 0.

The discrete values used for the radii are the αj, and all simplices that have a
filtration value larger than αmax are discarded.

The time complexity of the algorithm isO(n2). The choice of the Alpha Filtration
was motivated by its relatively much smaller size compared to other filtrations. A
detailed definition and implementation are provided in [26] and [75].

2.4.3 Persistence diagrams

In order to have a more exhaustive view on how the features are changing across
different scales, the appearance and disappearance of each feature within the filtra-
tion is tracked and coded into the Homology Groups Hk(M), where k = 0, 1, 2, 3 is
the homology dimension.

The elements of a Homology Group Hk(M) are classes of chains, which are unions
of simplices σ ∈ Sk(M), that is, simplices sharing faces, edges or vertices. It can be
seen as a connected component of the intersection of M with a k-dimensional linear
subspace of R3. The use of Homology Groups allows to perform algebraic operations
over their elements.

Given a Homology Group, we can now define how to track the appearance of
the features across different scales, by defining the Homology Group at a scale α,
Hα
k (M). It represents the classes of simplices as described previously, but taken from

Sαk (M). That is, the elements of Sk(M) with a filtration value lesser that α.
This approach is known as the Persistent Homology. It allows to quantify the

appearance and disappearance of the features across the different scales and dimen-
sions.

• The birth scale bγ of the feature γ at homology k

bγ = min
0≤j≤m

{αj : γ ∈ Hαj
k }

• The death scale dγ of the feature γ at homology k

dγ = max
0≤j≤m

{αj : γ ∈ Hαj
k }

The birth scale represents the value at which the feature appeared in the filtration
by combining lower dimensional simplices to form it. Conversely, the death scale
represents the value at which the feature disappeared in the filtration by being
combined into a higher dimensional feature. For example, if a vertex is part of
segment, then the death scale of the vertex is exactly the birth scale of the associated
segment.

Note that, by definition, vertices always have a zero birth scale, while tetrahe-
drons always have an infinite death scale (in the numerical results, we removed the
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infinite values for computation purposes). Given that our data points M are em-
bedded in R3, we will only track up to the dimension-2 features, thus the definition
of S(M) with k = 0, 1, 2. More generally, if the data points are embedded in a
d-dimensional manifold, the persistent homology can be computed up to dimension
d− 1.

Finally, the persistence of the features throughout the scales can be represented
by the so-called Persistence Diagram of M, defined at dimension-k from

PDk(M) = {(bγ, dγ) : γ ∈ Hk},

where bγ and dγ are the birth and death scales of a feature γ at homology k.
The surface M persistence diagrams PD(M) reads

PD(M) = {PD0(M),PD1(M),PD2(M)}.

2.4.4 Illustrating the concepts on an example

We illustrate the computational aspects of the Alpha Filtration on a simple example,
consisting of six points in R3, as shown in Figure 6.

M = {x0 = (1.1, 0.9, 0),x1 = (0.1, 0, 1),x2 = (0, 0, 0),
x3 = (0, 0.1, 1),x4 = (0.9, 1.1, 0),x5 = (0, 1, 0)}

The filtration values are computed and presented below in Table 3:

α Sα0 Sα1 Sα2 Sα3
0.00 [x0], [x1], [x2] - - -

[x3], [x4], [x5]
0.50 [x0], [x1], [x2] [x1, x3] - -

[x3], [x4], [x5]
2.00 [x0], [x1], [x2] [x1, x3], [x0, x4] - -

[x3], [x4], [x5]
20.50 [x0], [x1], [x2] [x1, x3], [x0, x4] - -

[x3], [x4], [x5] [x0, x2], [x4, x5]
45.25 [x0], [x1], [x2] [x1, x3], [x0, x4] - -

[x3], [x4], [x5] [x0, x2], [x4, x5]
[x1, x2], [x3, x5]

50.00 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]
[x2, x5]

50.02 [x0], [x1], [x2] [x1, x3], [x0, x4] - -
[x3], [x4], [x5] [x0, x2], [x4, x5]

[x1, x2], [x3, x5]
[x2, x5], [x2, x4]
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α Sα0 Sα1 Sα2 Sα3
64.73 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -

[x3], [x4], [x5] [x0, x2], [x4, x5]
[x1, x2], [x3, x5]
[x2, x5], [x2, x4]

[x1, x5]
70.64 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -

[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5]
[x1, x2], [x3, x5]
[x2, x5], [x2, x4]
[x1, x5], [x0, x1]

[x3, x4]
71.38 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] -

[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5]
[x1, x2], [x3, x5] [x0, x1, x4], [x1, x3, x4]
[x2, x5], [x2, x4]
[x1, x5], [x0, x1]
[x3, x4], [x1, x4]

71.55 [x0], [x1], [x2] [x1, x3], [x0, x4] [x1, x2, x5], [x1, x3, x5] [x0, x1, x2, x4]
[x3], [x4], [x5] [x0, x2], [x4, x5] [x0, x1, x2], [x3, x4, x5] [x1, x2, x4, x5]

[x1, x2], [x3, x5] [x0, x1, x4], [x1, x3, x4] [x1, x3, x4, x5]
[x2, x5], [x2, x4] [x1, x2, x4], [x1, x4, x5]
[x1, x5], [x0, x1]
[x3, x4], [x1, x4]

Table 3: Alpha Filtration of M

Figure 6: Example of data points M
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Figure 7: Persistence Diagrams PD(M)

We can then track the birth and death of the features and compute the persistence
diagrams PD(M), as shown in Fig. 7.

2.4.5 Matching persistence diagrams

Consider two data-sets Mr and Ms representing two deformed configurations of the
same surface. A matching between two persistence diagrams with the same number
of features, PDk(Mr) and PDk(Ms), for k = 0, 1, 2, is a bijective map ψk, that
reads:

ψk : PDk(Mr) −→ PDk(Ms),
such that ∀γ = (b, d) ∈ PDk(Mr),

ψk(γ) = (ψk1(b), ψk2(d))
= (b′, d′) ∈ PDk(Ms).

The map ψk associates each feature from PDk(Mr) to a feature from PDk(Ms). The

Optimal Matching between PDk(Mr) and PDk(Ms) is a matching ψ̂k

ψ̂k : PDk(Mr) −→ PDk(Ms),

minimizing the transport cost Ck to move the features from PDk(Mr) to PDk(Ms):

Ckmin =
∑

γ∈PDk(Mr)
‖γ − ψ̂k(γ)‖2

=
∑

(b,d)∈PDk(Mr)
‖
(
b− ψ̂k1(b), d− ψ̂k2(d)

)
‖

2

=
∑

(b,d)∈PDk(Mr)

√(
b− ψ̂k1(b)

)2
+
(
d− ψ̂k2(d)

)2
.

When Mr is the reference surface, and Ms any deformed surface resulting from
Mr, the optimal matching ψ̂k represents and quantifies the deformation from a
topological viewpoint, at each dimension k = 0, 1, 2.
We note that, in our case considered here, the diagrams have all been reduced to
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their top 3000 persistence values, making the bijective matching possible. In the case
of diagrams with different number of points, a partial matching is rather considered.
The optimal matching is computed using a combinatorial optimization procedure,
where the points in both diagrams are matched while minimizing the transport cost
function defined above. A graphical representation of the matching is shown in
figure 45.

Figure 8: Optimal matching of two persistence diagrams PD1(M) and PD1(N)

2.4.6 Multi-scale topological measure of surface deformation

It is now possible to measure the degree of deformation from one data-set to another.
For that purpose consider two data-sets Mr and Ms representing two deformed states
of the same surface, and a finite sequence of (αj)mj=0. Then, for k = 0, 1, 2, the k-
distance between PDk(Mr) and PDk(Ms) reads

Wk

(
PDk(Mr),PDk(Ms)

)
=

∑
(b,d)∈PDk(Mr)

√(
b− ψ̂k1(b)

)2
+
(
d− ψ̂k2(d)

)2
,

where ψ̂k is the optimal matching between PDk(Mr) and PDk(Ms). An efficient
computation of that distance Wk, known as the Wasserstein Distance, is performed
using the kernel linearisation presented in the Algorithm 2 of reference [45].
The Multi-Scale Topological Distance between Mr and Ms reads

Ω(Mr,Ms) =
√
ω2

0 + ω2
1 + ω2

2,

where ωk = Wk

(
PDk(Mr),PDk(Ms)

)
, k = 0, 1, 2.
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2.4.7 Comparing topological descriptions of deformed surfaces

Consider now our collection {M0,M1, . . . ,MM} of data-sets, consisting of the refer-
ence surface M0 and M = 102 deformed surfaces Mr, r = 1, . . . ,M.
By using the previously defined metric Ω, we can measure each surface deformation
with respect to the reference one, such that ∀r ∈ {1, · · · ,M} we have

Ωr = Ω(M0,Mr) =
√
ω2

0,r + ω2
1,r + ω2

2,r ,

where ∀r ∈ {1, . . . ,M}, ∀k ∈ {0, 1, 2}, we denote

ωk,r = Wk (PDk(M0),PDk(Mr)) .

The measure Ωr enables clustering the different surfaces (6×17, 17 being the number
of structural configurations, each one related to a particular value of the thickness)
into 6 clusters.

2.5 Modal Assurance Criterion

One of the most popular tools for the quantitative comparison of modal vectors
is the Modal Assurance Criterion (MAC) [52]. The MAC criterion is a statistical
indicator quite sensitive to large differences of the eigenmodes.
In our case, each mode Mr (r = 1, . . . ,M) is decomposed in its linear and angular
components (with respect to the three coordinate axes) resulting in the six vectors
{Ψr

c}1≤c≤6.
The MAC of two surfaces Mr and Ms, is then computed according to

MAC(Mr,Ms) =
∑6
c=1

(
Ψr
c ·Ψs

c

)2(∑6
c=1

(
Ψr
c

)2
)(∑6

c=1

(
Ψr
c

)2
) .

The MAC takes values between 0 (representing no consistent correspondence) and
1 (representing a consistent correspondence). Values larger than 0.9 indicate con-
sistent correspondence whereas small values indicate poor resemblance of the two
eigenmodes.
Thus, considering the six modes related to two different structures (with two dif-
ferent thicknesses), it is now possible to compute the so-called MAC matrix M to
compare the modes and identify resemblances or discrepancies.
The MAC matrix M becomes diagonal dominant when modes are well ordered,
whereas the loss of that diagonal dominance informs on eventual permutations. In
order to apply the MAC criterion in the case study addressed here, the first reduced
modal basis consisting of the six modes related to the first thickness will be com-
pared with the six modes of all the other configurations, the remaining 16 thickness
choices.
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2.6 Topological modes identification

By applying the methodology described in Section 2.4 to the surface data-sets, by
first computing the Alpha Filtration, we obtain the persistence diagrams {PDk(Mr)}M=102

r=0 ,
with the ones associated to the reference surface shown in Fig. 9. The multi-scale

Figure 9: Persistence diagrams associated to the reference surface, PDk(M0), for
k = 0 (left), k = 1 (center) and k = 2 (right)

distance defined in Section 2.4.6 and here associated to each surface {Ωr}M=102
r=1 is

then computed, and reported in Table 4.

Case 1st surf. 2nd surf. 3rd surf. 4th surf. 5th surf. 6th surf.
01 2828 3742 6012 6281 7070 7314
02 3839 4341 5160 5269 8299 9530
03 3540 4003 4702 5536 6436 8023
04 2971 3762 5883 7481 7429 9314
05 3062 3762 5437 6156 9865 10307
06 4852 5239 7294 8336 8237 9585
07 3482 4411 6095 6882 9319 10627
08 3392 3684 5903 6710 9273 9438
09 4648 5436 7986 7707 10415 9406
10 4425 4267 5583 5811 9620 9163
11 3256 3722 4782 4888 5840 8064
12 2993 3750 5551 6885 7135 8474
13 4281 4862 7127 8230 8170 9687
14 4367 5004 7140 7036 8285 8008
15 4937 5396 6484 6446 9323 10031
16 3184 3941 4907 4965 7205 8869
17 2957 3652 5652 6021 7659 7571

Table 4: Multi-scale topological distance of the six deformed surfaces related to the
six most significant deformation modes, of the 17 choices of the structure thickness
with respect to the reference undeformed surface
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This multi-scale topological distance is then used to order the deformed surfaces
to retain in each column of Table 5 those exhibiting a shape resemblance. From
Table 4 to Table 5, the surfaces have been sorted using the values of Table 4, and
their sorted order displayed in the Table 5. The goal is to have the surfaces labelled
from the less to the most deformed, according to our measure of deformation. In
Table 5, numbers in red indicate surface (modes) permutations that have been made
in order to classify all the shapes.

Case 1st surf. 2nd surf. 3rd surf. 4th surf. 5th surf. 6th surf.
01 1 2 3 4 5 6
02 1 2 3 4 5 6
03 1 2 3 4 5 6
04 1 2 3 5 4 6
05 1 2 3 4 5 6
06 1 2 3 5 4 6
07 1 2 3 4 5 6
08 1 2 3 4 5 6
09 1 2 4 3 6 5
10 2 1 3 4 6 5
11 1 2 3 4 5 6
12 1 2 3 4 5 6
13 1 2 3 5 4 6
14 1 2 4 3 6 5
15 1 2 4 3 5 6
16 1 2 3 4 5 6
17 1 2 3 4 6 5

Table 5: Surface ordering. Number in red indicated a permutation that must be
performed in order to align surfaces with respect to its shape

2.7 MAC Identification

Using the MAC criterion described in Section 2.5, we compute the MAC matrices
comparing the model reduced basis (of the first thickness choice) with the remaining
16 reduced modal bases for the other thickness choices, and the results are reported
in Fig. 10.

2.8 Discussion

Labelling the surfaces as reported in Table 5 aims at classifying them according their
shape induced by their deformation. The greater the value of the topological metric
Ω, the more deformed the surfaces are. The surface discrepancies are quantified
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Figure 10: Modal Assurance Criterion matrices when comparing the model reduced
basis—RB— (of the first thickness choice) with the remaining 16 reduced modal
bases for the other thickness choices

from the transport cost related to the matching of the topological features that the
deformed meshes express, through different scales and dimension.

The value of Ω can be interpreted as a level of topological deformation for a
certain deformed mesh on the deformed surface compared with the non deformed
mesh and surface. Thus, labels 1 to 6 in the case here addressed, express the
magnitude of the surface deformation. Figure 11 depicts the six ordered deformed
surfaces for one particular case (structure with a given thickness).

By inspecting Table 5, it can be noticed that the surface label usually match the
order of the eigenmodes provided by the eigenproblem solution. However, when mod-
ifying the structure thickness, some shapes that were important for a given thickness
can be now more or less significant and the order of apparition in the eigenproblem
differs. Thus, a permutation must be performed for ordering the modes with respect
to their intrinsic shapes, here evaluated by using a metric based on topological con-
cepts.The MAC matrices displayed in Fig. 10 show similar tendencies, as the modes
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Figure 11: (top-left) First mode; (top-right) Second mode; (middle-left) Third mode;
(middle-right) Fourth mode; (bottom- left) Fifth mode; and (bottom-right) Sixth
mode

are globally consistent with their labels.
The presented topology-based framework for measuring surface deformations

seems a very pertinent, powerful and intrinsic way of quantifying, characterizing
and analyzing the deformation modes of structures. The strength of the framework
relies on both the topology description of the surface at multiple scales, and the
proposed measure based on the optimal matching of the features, to detect how
each feature of the surface was deformed.
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3 Tape Surfaces Characterization

In this chapter, we leverage the main surface topological descriptors to classify tape
surface profiles, through the modelling of the evolution of the degree of intimate con-
tact along the consolidation of pre-impregnated preforms associated to a composite
forming process.

3.1 Introduction

Among composite forming processes for manufacturing structural parts based on
the consolidation of pre-impregnated preforms, e.g., sheets, tapes, .... the auto-
mated tape placement (ATP) appears as one of the most interesting techniques due
to its versatility and its in-situ consolidation, thus avoiding the use of autoclave.
In particular, to obtain the cohesion of two thermoplastic layers two specific phys-
ical conditions are needed (a) an almost perfect contact (intimate contact) and (b)
a temperature enabling molecular diffusion within the process time window, while
avoiding thermal degradation. To reach this goal, a tape is placed and progressively
bonded to the substrate consisting of the tapes previously laid-up. Due to the low
thermal conductivity of usual resins, an intense local heating is usually considered
(laser, gas torches, etc.) in conjunction with a local pressure applied by the consol-
idation roller moving with the heating head, as sketched in Figure 12. Thus, the
two main factors to ensure the intimate contact at the plies surfaces are pressure
and heat. Intimate contact is required to promote the molecular diffusion. In this
process heat plays a double role, on one hand it enhances molecular mobility and on
the other hand, the decrease of the material viscosity with the temperature increase,
facilitates the squeeze flow of the heated asperities located on the ply surfaces under
the compression applied by the consolidation roller.

Figure 12: The automated tape placement (ATP).
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The numerical model of ATP was introduced in [6] by using the so-called Proper
Generalized Decomposition (PGD) [7, 8, 9, 10, 12]. The separated representation
involved in the PGD enables the 3D high-resolution solution of models defined in
degenerated domains where at least one of their characteristic dimensions remains
much smaller than the others and also constructing solutions of parametric models
where the model parameters are considered as extra-coordinates [11, 13].

Physical modelling and simulation for Automated Tape Placement (ATP) have
been proposed in [14] to study the influence of material and process parameters,
while consolidation modelling and sPGD-based non-linear regression have been used
in [15] to identify the main surface descriptors for a comprehensive characterization
of the tape surfaces.

In this chapter, we first revisit the consolidation modeling and its high resolution
simulation, enabling the evaluation of the time evolution of the degree of intimate
contact –DIC– when two rough surfaces are put in contact, heated and compressed.

As we are addressing tapes involved in the ATP process sketched in Fig. 12, the
roughness squeezing mainly occurs along the transverse direction (the one related
to the tape width) induced by the roller compression. Thus, the flow occurs in
the transverse section in which the surface reduces to a one-dimensional curve (the
so-called surface profile).

It is well-known at an experimental level that the consolidation degree strongly
depends on the surface characteristics (roughness). In particular, same process pa-
rameters applied to different surfaces produce very different degrees of intimate
contact. It allows us to think that the surface topology plays an important role
along this process. However, solving the physics-based models for simulating the
roughness squeezing occurring at the tapes interface represents a computational ef-
fort incompatible with online process control purposes. An alternative approach
consists of taking a population of different tapes, with different surfaces, and simu-
lating the consolidation for evaluating for each one the progression of the degree of
intimate contact –DIC– while compressing the heated tapes, until reaching its final
value at the end of the compression. The final goal is creating a regression able to
assign a final value of the DIC to any surface, enabling online process control. The
main issue of such an approach is the rough surface description, that is, the most
precise and compact way of describing it from some appropriate parameters easy to
extract experimentally, to be included in the just referred regression.

In order to extract a concise and complete description of the rough surfaces, we
use a topological description [27, 28, 29, 26] of the surface profiles, to construct de-
scriptors such as the persistence diagrams and images. Then, the persistence images
are considered for classifying surfaces, or as descriptors involved in the regression re-
lating them to the final DIC reached in the consolidation process, enabling real-time
decision making.
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3.2 Consolidation modelling

In our recent works [22, 23, 14] we proposed simulating the consolidation on the real
surfaces instead of the, sometimes too crude, approximations of them based on the
use of fractal representations or the ones based on the description of asperities from
the use of rectangular elements [53, 54].

As sketched in Figure 13, a Haar-based wavelet representation [14] of a rough
surface results in a multi-scale sequence of rectangular patterns, from the coarse scale
(level 0) to the finest one (level 8) that constitutes a quite precise representation
of the considered surface (the one illustrated in Figure 13). The smoother is the
surface, the less levels in the description are required.

Level 6

Level 8

Level 4

Level 2

Level 0

Figure 13: Simple surface representation using Haar wavelets.

The advantage of such a representation consisting of hierarchical rectangles is
double: (i) from one side it facilitates the high-resolution of the thermal problem
while accounting for all the interface details and their time evolution; and on the
other (ii) it allows squeezing the rectangles of a certain level (from the finest level
to the coarser one) while retaining the lubrication hypotheses, fact that simplifies
significantly the flow modeling and the calculation of the interface evolution when
squeezing the asperities. Both aspects are revisited below.

1. As soon as the rough surface profile is represented in a step-wise way consisting
of R rectangular elements, with each rectangle r having a length lr and a
height hr, assumed centered at xr, each rectangle can be expressed by its
characteristic function in a separated form χr(x, z) = Lr(x)Hr(z), with Lr(x)
and Hr(z) given respectively by Eqs. (7) and (8),

Lr(x) =
{

1 if x ∈ (xr − lr/2, xr + lr/2)
0 elsewhere , (7)

and

Hr(z) =
{

1 if z ∈ (0, hr)
0 elsewhere , (8)

that allows expressing the conductivity at the interface level according to Eq.
(9),

K(x, z) =
(

1−
R∑
r=1
Lr(x)Hr(z))

)
Kc +

( R∑
r=1
Lr(x)Hr(z))

)
Ka, (9)
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where Ka and Kc represent the air and composites conductivities, with the
former assumed isotropic and the last concerning the composite conductivity
transverse components.

This separated representation of the thermal conductivity allows looking for a
separated representation of the temperature field within the proper generalized
decomposition –PGD– framework, according to Eq. (10)

T (x, z) ≈
M∑
i=1

Xi(x) Zi(z), (10)

that by decoupling the 2D heat equation solution into a sequence of 1D prob-
lems for computing the functions Xi(x) and Zi(z) allows an extremely fine
resolution as discussed in [14].

As the asperities squeezing progresses, the surface evolves and with it the
height of the different rectangular elements. The conductivity separated rep-
resentation must be updated and the thermal problem solved again to compute
the updated temperature field (10).

2. As soon as the temperature field is available, the polymer viscosity can be eval-
uated and the asperities will flow under the applied pressure. As commented,
the description of the surface by using rectangular elements, with their charac-
teristic length l much larger that its characteristic height h, i.e. l� h, makes
possible the use of the lubrication hypotheses, widely addressed in our former
works [23].

The surface updating procedure is quite simple. We consider all the com-
pressed rectangles, and solve in them the squeeze flow model, while assuming
that the pressure in all the other elements vanishes. As soon as the pressures
are available in all the rectangles that are being compressed, the velocity field
and more precisely the flow rates can be obtained at the lateral boundaries.
The fluid leaving each rectangular element that is being compressed is trans-
ferred to the neighbor rectangular element that increases its height accordingly
in order to ensure the mass conservation.

As it can be noticed, this procedure allows unimaginable level of accuracy, how-
ever, despite of the speed-up that separated representation offers, its use online for
predicting the thermal and flow coupled problem for any incoming rough tape is not
an option.

3.3 Surface descriptors based on homology persistence

In this section we introduce the data and methods used, in particular the TDA and
its related procedures (persistent diagrams and images), even if other approaches
exist, e.g. [15, 31].

The proposed methodology proceeds in three main stages:
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1. Processing the surface profiles data;

2. Compute persistent diagrams and images;

3. Construct the regressions relating the surface topological descriptors and the
quantities of interest –QoI–, concretely the DIC.

3.3.1 Processing the surface profiles data

In order to classify the main surface descriptors of a tape surface, we will consider
samples scanned with a 3D non contact profilometer, with a 3.5 um resolution and
where each sample has a length of approximately 3 mm (along the tape width). A set
of 1359 surface profiles were extracted from 16 different pre-impregnated composite
tapes provided by different customers using different impregnation process, each one
represented by 800 measured data points

{
S

(k)
` : 1 ≤ ` ≤ 800, 1 ≤ k ≤ 1359

}
.

The main goal is to give a procedure to construct a classification C(S), that is,
a map ensuring C(S(k)) = i if and only if S(k) was extracted from the tape i, with
i = {1, 2, . . . , 16}.

In particular, to facilitate data comparison the profiles are corrected by sub-
tracting the average height. Figure 14 depicts the different surfaces in each of the
16 classes, as well as normalized profile.

(a) (b)

Figure 14: Surface profiles data. (a) The 16 surface classes, (b) corrected surface
profile when subtracting its averaged height.

3.3.2 Persistence diagrams and images

The persistence diagram consists of a one-to-one local-minimum-local-maxixum pair-
ing. To illustrate the procedure we consider a simple case of a profile described by
9 heights, S = {11, 14, 9, 7, 9, 7, 8, 10, 9}, that corresponds to the 9 data points de-
picted in Figure 15: {(0, 11), (1, 14), (2, 9), (3, 7), (4, 9), (5, 7), (6, 8), (7, 10), (8, 9)}.

Now, we consider the 4 local minimum: {(0, 11), (3, 7), (5, 7), (8, 9)} and the only
3 local maximum: (1, 14), (4, 9), (7, 10). We associate (0, 11) to (1, 14), then (8, 9)
to (7, 10) and finally (5, 7) to (4, 9). The remaining local minimum (3, 7) can not be
paired to any other local maximum because all of them have already been paired.
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Figure 15: Profile consisting of 9 measured height at 9 positions.

The local-minimum-local-maximum paired heights constitutes the so-called persis-
tence diagram PD(S), in our example PD(S) = {(7, 9), (9, 10), (11, 14)}, with the
minimum of the pair representing the topological occurrence birth, whereas the as-
sociated maximum its death.

In our example, consisting of the 9 data and the three topological occurrences
composing, the associated persistence diagram is shown in Figure 16.

Figure 16: Persistence diagram PD(S).

In the two dimensional representation associated to the persistence diagram,
each data point (x, y) verifies the relationship y ≥ x (the topological occurrence
birth precedes its death) and then points locate above the bisector x = y. The
topological representation provided by the persistence diagram offers a very concise
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description of any curve (e.g. surface profiles, time-series, etc.) and the change in
their topological features as considered in [29, 26, 32, 74].

In order to use the persistence diagram and perform vectorial operations such as
the ones required in classification, we must transform the persistence diagram into
a vectorial representation of it, the so-called persistence image [33, 74].

For that purpose, we first introduce the so-called lifetime diagram T (S) associ-
ated to the function PD(S), defined in Eq.(11)

T (S) = {(x, y) ∈ PD(S)→ (x, y − x) ∈ R2}, (11)

where y− x represent the lifetime of the topological occurrence. In our example we
have T (S) = {(7, 2), (9, 1), (11, 3)}, that is illustrated in Figure 17.

Figure 17: Lifetime diagram T (S) associated to PD(S).

Next, we will construct a persistent image as follows. We consider a continuous
piecewise derivable non-negative weighting function (with (x, y) ∈ T (S), w(x, 0) = 0
and w(x, ymax) = 1, with ymax = max(y), that can be approximated by a linear
function of the lifetime y, e.g. w(x, y) = y/ymax) and a bivariate normal distribution
gx,y(u, v) centered at each point (x, y) ∈ T (S) and with its variance σ, σ > 0, scaling
with the maximum of the lifetime diagram [33, 74], then we define the variable
ρS(u, v) expressed in Eq. (12)

ρS(u, v) =
∑

(x,y)∈T (S)
w(x, y) g(x,y)(u, v), (12)

with (u, v) ∈ D, with D a compact domain (for example the domain in which T (S)
is defined).

Now, the domain D is partitioned in a series of non-overlapping subdomains
covering it, the so-called pixels Pi, with D = ∪P

i=1Pi, and function ρS(u, v) averaged
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in each of those pixels, that will define the persistence image PI(S). Thus each of
the P pixels of the persistence image PI(S) takes the value given by Eq. (13)

PIPi(S) =
∫∫

Pi
ρS(u, v) du dv. (13)

As the profile that served to illustrate the different concepts contains too few
topological occurrences, to illustrate what a persistence image resembles to, we con-
sider a profile related to one of the measured rough surfaces S, compute the per-
sistence diagram PD(S), then its associated lifetime diagram T (S), and finally its
persistence image PI(S). Figure 18 shows PD(S) and PI(S), the last employing
20 × 20 pixels, i.e. P = 400 with a variance σ in the normal distribution gx,y(u, v)
given by Eq. (14)

σ = max(x,y)∈T (S) {y}
20 . (14)

(a) (b)

Figure 18: TDA analysis of a real rough surface. (a) Persistence diagram PD(S),
(b) persistence image PI(S).

3.3.3 Images classification

When applying the rationale just described to the 1359 rough surfaces S(k), k =
1, . . . , 1359, we will obtain the associated 1359 persistence diagrams PD(S(k)), life-
time diagrams T (S(k)) and persistence images PI(S(k)), k = 1, . . . , 1359.

Thus each surface produced a persistence image composed of P = 400 pixels.
These images are expected belonging to 16 different classes, the 16 families of com-
posite tapes. Obviously, trying to proceed to that classification directly from the
surface raw data S(k) seems a tricky issue because the proximity is not well defined
when using a standard Euclidean metric. The same surface taken with a small shift
will induce a significant difference. Metrics based on the topology seem more robust
because the appealing associated invariance properties. Thus, more than trying to
classify from the raw data, persistence images seem to be the right starting point.
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Image classification is a procedure to automatically categorize images into classes,
by assigning to each image a label representative of its class. A supervised classi-
fication algorithm requires a training sample for each class, that is, a collection of
data points whose class of interest is known. Labels are assigned to each class of
interest. The classification is thus based on how close a new point is to each training
sample. The Euclidean distance is the most common distance metric used in low
dimensional data sets. The training samples are representative of the known classes
of interest to the analyst.

In order to classify the persistence images we can use any state of the art tech-
nique. In our case we considered the Random Forest classification [73]. We train the
random forest (consisting of 400 trees) by using 65% of the the persistence images
(the remaining 35% serving to evaluate the classification performances), where a
label was attached to each one, a label precisely specifying the family, among the 16
composites considered, to which it belongs.

With the trained random forest one expects, from a given persistence image,
obtaining in almost real-time the family to which it belongs, of major interest in
process control.

3.3.4 Images clustering

Unsupervised learning algorithms aim at finding unknown patterns in data sets
without pre-existing labels. Clustering is used in unsupervised learning to group, or
segment, data that has not been labelled, classified or categorized. It is based on
the presence or absence of commonalities in each new piece of data. This approach
also helps detect anomalous data points that do not fit into either group.

One of the most popular clustering techniques, the k-means, aims at partitioning
the observations into k clusters in which each observation belongs to the cluster
with the nearest mean or center [73]. The cluster center serves as a prototype of the
cluster population. The observations are then allocated according to the criterion
of minimizing the within-cluster variances, which is a squared Euclidean distance.
The data can be then labelled according to their respective clusters (arbitrarily
numbered).

To determine the optimal number of clusters we proceed as follows. For different
values of k, k-means is trained with the whole data-set, and the data-labelled de-
pending on the cluster to which each data belongs. Then, k-means is applied again
but now with only 65% of the data. Then, for each data the cluster to which it
belongs is compared to the label (cluster to which it belonged when all the data was
employed in the k-means). A parametric variance analysis allows determining the
optimal value of k, that in our case resulted as expected k = 16.

As soon as the best number of cluster is determined, k = 16 in our case, k-means
proceeds with the whole data to generate the reference labels (cluster to which each
data belongs). Then, the process repeats but now employing only 65% of the data.
Finally we estimate for the remaining 35% of the data to which cluster it is associated
and compare with its label to have an estimation of the clustering performances.
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3.3.5 Predicting the degree of intimate contact

The consolidation process of all the available surfaces (1359) was simulated by using
the PGD-based high-resolution solver described in Section 3.2. The evolution of
the DIC, that is, the fraction of the surface in perfect contact, was evaluated at
the different time steps. Figure 19a depicts the DIC evolution for the 1359 surfaces
during the first 200 time steps of the consolidation process. As it can be noticed
the dispersion of the DIC is quite small within each one of the 16 composite tapes
(classes), however it exhibits large differences from one composite to another.

In what follows we are interested in the DIC prediction at the last time step (the
number 200), that will consist of our quantify of interest –QoI– O, that for each
surface results in the values O(k), k = 1, . . . , 1359 depicted in Figure 19b.

(a) (b)

Figure 19: Simulated degree of intimate contact. (a) Simulated time evolution of
the DIC, (b) DIC reached at time step 200 for each surface.

Now, we are interested in constructing a regression for expressing the QoI, O, as
a function of the considered surface, the geometry of the last expressed through its
persistence image.

For that purpose we are considering two regression techniques: (i) the so-called
Code2Vect [16] summarized in the Appendix, and (ii) the random forest.

Code2Vect maps the surfaces described by the 400 values related to the pixels
of their associated persistence images into another low dimensional vector space
where the distance between any two points (representing two surfaces) scales with
the QoI difference, that is, with respect to the difference of their DIC. However,
as for usual nonlinear regression techniques, the complexity scales with the number
of parameters involved in the regression, and here 400 seems a bit excessive with
respect to the available data.

For this reason, and prior to the use of Code2Vect regression, the 1359 persis-
tence images, each represented by 20 × 20 pixels, are first analyzed by using the
principal component analysis –PCA– to remove linear correlations [73] where the
two most significant modes were retained, and each persistence image described by
its projection on both models. Thus, the reduction is impressive, each persistence
image, and in consequence each surface, is now described from only two parameters.
Then, the Code2Vect was employed to establish the regression between these two
parameters and the quantity of Interest O, the final DIC [16].

60



Again, to evaluate the regression performances, Code2Vect was trained by using
80% of the data, and the remaining 20% served for evaluating the prediction per-
formances.

As previously indicated a regression based on the use of Random Forest [73]
(using 400 trees) was considered, with 65% of the data used in the training and 35%
for evaluating the prediction performances.

3.3.6 Models evaluation

For evaluating the model performances we consider different procedures:

• Confusion matrix

The component (i, j) of the confusion matrix contains de number of surfaces
that belonging to a class i are predicted belonging to class j. Obviously the
classification is perfect when this matrix becomes diagonal.

• Classification scoring. Evaluating a classification model is determining how
often labels are correctly or wrongly predicted for the testing samples. In
other words, it is counting how many times a sample is correctly or wrongly
labelled into a particular class. We distinguish four qualities:

– TP (True Positive): the correct prediction of a sample into a class;

– TN (True Negative): the correct prediction of a sample out of a class;

– FP (False Positive): the incorrect prediction of a sample into a class;

– FN (False Negative): the incorrect prediction of a sample out of class.

These quantities are involved in the definition of different estimators of the
model performances:

– The Precision (P) is the number of correct positive results divided by the
number of all positive results, expressed by (15)

P = TP

TP + FP
(15)

– The Recall (R) is the number of correct positive results divided by the
number of all relevant samples, expressed by (16)

R = TP

TP + FN
(16)

– The F1 score is the harmonic mean of precision and recall, expressed by
(17)

F1 = 2 P ·R
P +R

(17)
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– The Accuracy (A) is the number of correct predictions over the number
of all samples, expressed by (18)

A = TP + TN

TP + TN + FP + FN
(18)

• Regression scoring

We evaluate our regression prediction using the R2 coefficient, defined in Eq.
(19)

R2 = 1−
∑n
i

(
Otruei −Opredi

)2

∑n
i

(
Otruei −Otrue)

)2 . (19)

We also use the mean absolute percentage error MAPE, defined in (20)

MAPE = 100%
n

n∑
i

∣∣∣∣∣Otruei −Opredi

Otruei

∣∣∣∣∣ , (20)

with best model having the closest MAPE to 0%.

• Features importance. In decision trees, every node is a condition on how to
split values for a single feature, so that similar values of the dependent variable
end up in the same set after the split. The condition is based on impurity,
which in the case of classification problems is the Gini impurity or the infor-
mation gain (entropy), while for regression trees it is the variance. So when
training a tree, we can compute how much each feature contributes to decreas-
ing the weighted impurity, and in the case of Random Forest, we are talking
about averaging the decrease in impurity over all the trees [73]. Although this
method is known to be statistically biased for categorical variables, it should
not be affected in our case, as we only have homogeneous and continuous
variables, 20× 20 pixels images.

3.3.7 Code2Vect

Code2Vect maps data, eventually heterogeneous, discrete, categorical, ... into a
vector space equipped of an euclidean metric allowing computing distances, and in
which points with similar outputs O remain close one to other as sketched in Figure
20.

We assume that points in the origin space (space of representation) consists of P
arrays composed on D entries, noted by yi. Theirs images in the vector space are
noted by xi ∈ Rd, with d� D. The mapping is described by the d×D matrix W,
according to (21)

x = Wy, (21)

where both, the components of W and the images xi ∈ Rd, i = 1, · · · , P, must be
calculated. Each point xi keep the label (value of the output of interest) associated
with is origin point yi, denoted by Oi.
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Figure 20: Input space (a) and target vector space (b).

We would like placing points xi, such that the Euclidian distance with each other
point xj scales with their outputs difference, as expressed in Eq. (22)

(W(yi − yj)) · (W(yi − yj)) = ‖xi − xj‖2 = |Oi −Oj|, (22)

where the coordinates of one of the points can be arbitrarily chosen. Thus, there
are P2

2 − P relations to determine the d×D + P× d unknowns.
Linear mappings are limited and do not allow proceeding in nonlinear settings.

Thus, a better choice consists of the nonlinear mapping W(y) [16].

3.4 Results

In this section we provide the numerical results and evaluations associated to each of
the previously introduced models: Random Forest classification, k-means clustering,
Code2Vect and Random Forest regression.

3.4.1 Classification results

The trained random forest classifier for the persistence images shows high accuracy
scores (over 99%), suggesting a strong differentiation of the images with respect
to their generating surface profiles. The classification performance report shown
in Figure 21 summarizes the precision, recall, f1-score estimators over each of the
16 classes (surface labels) from the test dataset. The number of samples for each
class is also provided. The accuracy score estimator is computed over the complete
test dataset, along with the macro and weighted averages of the previously cited
estimators.

The confusion matrix given in Figure 22 shows that images are accurately la-
belled across all classes, reporting also the normalized scores. It was proved that
these results are quite insensible to randomizing and changing the ratio between the
training and testing samples.
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Figure 21: Classification performance report

(a) (b)

Figure 22: Confusion matrix for the random forest classifier. (a) Original, (b)
normalized.

3.4.2 Clustering results

Given the disparity between clusters labels and original labels (k-means algorithm
assigns clusters labels arbitrarily), the confusion matrix is the best way to evaluate
the model performance. It shows a majority of one-to-one classes correspondence,
meaning that given a certain permutation of the columns (clusters labels), we can
obtain a rearranged matrix. The permuted confusion matrix given in Figure 23b
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shows a good accuracy (80%) for the clustering compared to the original profiles
labels.

(a) (b) (c) d

Figure 23: Confusion matrix for k-means clustering of the complete dataset. (a)
Original, (b) permuted, and (c) normalized.

In order to evaluate the predictive performances of the trained model, we com-
pare the predicted labels (clusters) of the test data against their actual labels. The
labelling disparity still remains, with a majority of one-to-one classes correspon-
dence. After reordering the confusion matrix, depicted in Figure 24b, we can ob-
serve a good enough accuracy of the clustering (77%) for predicting labels. Thus,
the model allows to identify the surface of new incoming profiles, when proceeding
in an unsupervised way.

(a) (b) (c)

Figure 24: Confusion matrix for k-means predictions over the test dataset. (a)
Original, (b) permuted, and (c) normalized.

3.4.3 DIC prediction by regression

Code2Vect performs an accurate regression of the DIC, with a MAPE of 2.3% when
considering all the data and a MAPE of 12.86% when applied on the points that
were not used in training, as shown in Figure 25. Thus, it can be concluded that the
reduction of the persistence images to only two quantities (the weights of the two
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most relevant modes extracted from the PCA applied on the persistence images) has
not a significant impact in the regression performances, proving that the combination
of Code2Vect and PCA constitutes an excellent nonlinear dimensionality reduction
technique. The correlation between these two parameteres (PCA weights) and the
QoI (DIC) is also shown in Figure 25b.

(a) (b)

Figure 25: Code2Vect regression performance. (a) Prediction error, (b) projected
space.

Similarly, the random forest regression shows a high reliability to accurately
predict our quantity of interest, with an R2 score over 96%.

3.5 Discussion

Composite tapes have been successfully classified using the persistence images re-
lated to their rough surfaces. Topological Data Analysis seems a very valuable way
of describing accurately and concisely those surfaces, in particular its roughness that
constitutes the main factor when evaluating the consolidation performances, from
the time evolution of the DIC (degree of intimate contact).

Different classification (supervised) and clustering (unsupervised) were success-
fully applied for associating the different surfaces to the composites from which they
were extracted. On the other hand, by using advanced regression techniques, the
degree of intimate contact was associated to the surface topological content, with
excellent and fast predictions of the expected DIC for a given surface.

These procedures open unimaginable possibilities in process control and the on-
line adaptation of processing parameters for ensuring the adequate DIC at the end
of the process.
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4 Advanced Driver-Assistance Systems

In this chapter, we aim at evaluating the state of drivers to determine whether
they are attentive to the road or not by using motion sensor data collected from
car driving experiments. That is, our goal is to design a predictive model that can
estimate the state of drivers given the data collected from motion sensors. For that
purpose, we analyze and transform the data coming from sensor time series and
build a machine learning model based on the topological features extracted with the
TDA. We provide some experiments showing that our model proves to be accurate
in the identification of the state of the user, predicting whether they are relaxed or
tense.

4.1 Introduction

While there have recently been considerable advances in self-driving car technol-
ogy, driving still relies mainly on human factors. Even in self-driving mode, human
drivers must often make decision in a fraction of a second to avoid accidents. There-
fore, it is still of utmost importance to develop systems capable of discerning if the
human driver is attentive or not to the road conditions. In general, the so-called
advanced driver assistance systems (ADAS) [55, 56] are systems that are able to
improve the driver’s performance, among which, adaptive speed limiters, pedestrian
detectors [57], and cruise controllers are some of the most popular systems. Fatigue
alerting systems are among the most useful among ADAS systems, and the aim of
this work is to contribute to the development of such a system based on a systematic
analysis of drivers in actual driving conditions.

The estimation of the driver’s condition (degree of attention to the road, fatigue,
etc.) is a very important factor to ensure safety in driving [58, 59]. A recent review
on the topic can be found in [60]. The goal of this work is to extract behavior
patterns from car user data to be able to accurately estimate their state. We used
data obtained by the laboratory of prof. Hyung Yun Choi at Hongik University in
Seoul. His experiment involved the application of mechanical stimulation to people
seated in an automobile.

Our main goal is to extract patterns of behavior from experimental data so as to
allow us to learn the most relevant factors affecting driver’s attention to the situation
of the road.

In the present work, we combine some tools from Morse theory [35] and topo-
logical data analysis (TDA) with all of the associated concepts and methods (e.g.,
Betti numbers, homology persistence, barcodes, persistence images, etc.) [34], most
of them introduced and employed later in order to analyze and classify the exper-
imental data. This allows us to introduce concepts as barcodes, that is, persistent
and life-time diagrams in a similar way to how they are used in persistent homology.
Our main goal is to predict car user behavior following a supervised approach [27].
Instead of considering an original sensor signal as the quantity of interest, we fo-
cus on its topological features. In this sense, the framework proposed in this paper
allows us to unveil the true dimensionality of data or, in other words, the actual
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number of factors affecting driver’s performance. Thus, we model a sensor signal as
a dynamical system, and, therefore, our approach seems to be better at describing
its properties, or rather its variations, such as extrema, patterns, and self-similarity,
than other approaches. We note that our approach is, in some senses, similar to that
followed by Milnor and Thurston [36] in the study of the combinatorial properties
of dynamical systems by combining tools from automata theory.

In Section ??, we describe the material and methods employed in this work.
Particular attention is paid to the process of data acquisition and the description
of time series and data curating. In Section 4.7, we present the main results of
this work, and we discuss the main consequences in Section 4.8. In Section 4.2, we
describe the data acquisition, and in Section 4.3, we provide a description of the
time series. Section 4.4 is devoted to data preprocessing. The mathematical tools
used to describe the times series at a topological level are explained in Section 4.5.
Finally, the image classification methodology is given in Section 4.6.

4.2 Data Acquisition

Our proposed predictor directly uses the data collected from the experiments. The
data acquisition process involves measuring the response of human behavior when
an excitation is applied to the seat. Figure 26 shows the location of the sensors in
the experiments.

Figure 26: Scheme of the data acquisition process showing the location of the sensors.

The excitation signal is an angular acceleration imposed on the seat of the user.
This acceleration is an oscillating chirp function with a frequency range of 1 to 7.5
Hz on the X axis in rotation. The linear acceleration a = (ax, ay, az) and angular
velocity ω = (ωx, ωy, ωz) were measured in both the head and the seat by two IMU
(Shimmer inertia measurement unit (IMU) sensors) at 256 Hz. By observing the
floor excitation signals, we noted that the excitation is purely rotational around the
X-axis—see Figure 27.
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Figure 27: Floor excitation: X-axis angular velocity time series.

Several experiences were conducted by nine people by taking into account a set of
six fixed states: driver, passenger, tense person, relaxed person, rigid seat, and SAV
(sport activity vehicle seat). In particular, for each individual, eight experiments for
the six available states were performed:

Class Label
1 SAVRelaxedPassager
2 SAVTensePassager
3 SAVRelaxedDriver
4 SAVTenseDriver
5 RigidRelaxedPassager
6 RigidTensePassager
7 RigidRelaxedDriver
8 RigidTenseDriver

As a consequence, we worked with a sample of 72 experiences, each of them
encoded in a time series (as we explain later). Our goal is to classify the behavior
of a generic driver, assigning one of the two states (tense or relaxed) by using the
sensor data.

4.3 Time Series Description

The data acquired from sensors (see Figures 28 and 29) were stored into six-dimensional
time series, for both linear acceleration and angular velocity of the head movement.
The sampling frequency of the data was 256 Hz, and the duration of the experiment
was 34 s; hence, the resulting data dimensionality is 256×34 = 8704. For each times
series, where 1 ≤ t ≤ 8704, we constructed three new times series called the sliding
window, embedding a length of 5800. The first one is given by the times values
from t = 1 to t = 5800, the second is given by the times values from t = 1450 to
t = 7250, and, to conclude, the third time window is defined as from t = 2904 to
t = 8704. Each element in the sample (1 ≤ i ≤ 72) was encoded by means of three
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six-dimensional time series representing each of the three sliding windows that we
represent in matrix form as follows:

TS3(i−1)+1 =



a`x(1) a`x(2) · · · a`x(5800)
a`y(1) a`y(2) · · · a`y(5800)
a`z(1) a`z(2) · · · a`z(5800)
ω`x(1) ω`x(2) · · · ω`x(5800)
ω`y(1) ω`y(2) · · · ω`y(5800)
ω`z(1) ω`z(2) · · · ω`z(5800)



TS3(i−1)+2 =



a`x(1450) a`x(1451) · · · a`x(7251)
a`y(1450) a`y(1451) · · · a`y(7251)
a`z(1450) a`z(1451) · · · a`z(7251)
ω`x(1450) ω`x(1451) · · · ω`x(7251)
ω`y(1450) ω`y(1451) · · · ω`y(7251)
ω`z(1450) ω`z(1451) · · · ω`z(7251)



TS3i =



a`x(2903) a`x(2905) · · · a`x(8704)
a`y(2903) a`y(2905) · · · a`y(8704)
a`z(2903) a`z(2905) · · · a`z(8704)
ω`x(2903) ω`x(2905) · · · ω`x(8704)
ω`y(2903) ω`y(2905) · · · ω`y(8704)
ω`z(2903) ω`z(2905) · · · ω`z(8704)


Here, the matrices have a size of 6 × 5800 and 1 ≤ i ≤ 72. This allows us to

represent the information by using a third-order tensor, namely, Z ∈ R216×6×5800

defined by
Zi,j,k := (TSi)j,k

for 1 ≤ i ≤ 216, 1 ≤ j ≤ 6 and 1 ≤ k ≤ 5800. We can identify Zi = TSi for
1 ≤ i ≤ 216.

Figure 28: Sensor data: linear acceleration time series.
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Figure 29: Sensor data: angular velocity time series.

4.4 Data Preprocessing

In order to obtain a single series for each observation, we concatenated all of the
6 time series (linear accelerations and angular velocities) for each observation hori-
zontally and then created a data frame by stacking the 216 in sample observations.

The concatenation operation on the multidimensional time series collapsed the
last two dimensions into one dimensional arrays with a length of 5800× 6 = 34,800.
The result is the two-dimensional table of concatenated time series

D =

 vec(Z1,:,:)
. . .

vec(Z216,:,:)

 ∈ R216×34800.

We chose not to filter the signals because the topological sub-level set method
should filter the high-frequency features naturally. We also chose to keep working
on acceleration signals in order to avoid signal deviations after two integrations in
time so as to obtain positions, the sensors not always keeping a zero mean height.
Thus, the approach is completely (topologically) data-based.

The six time series Zi of each observation were collapsed into a single concate-
nated time series with a size of 34,800—see Figure 30. The concatenated time series
for the 216 observations were then stacked to create the dataset D with a size of
216× 34,800. We also used binary labels in the chained time series Zi on the two
target classes that we were interested in. In particular, we wrote Z(α)

i where α is ”0”
for a relaxed driver and “1” for a tense one.
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Figure 30: Tensor reduction of a sensor time series.

4.5 Extracting Topological Features from a Time Series

The idea to extract the topological information regarding the times series is to
consider each sample observation as a piece-wise linear continuous map from a closed
interval to the real line. Therefore, we used a construction closely related to the Reeb
graph [37] used in Morse theory to describe the times series at the topological level.

To this end, we consider the time series xt for 0 ≤ t ≤ N − 1 (N ≥ 3) given by
a vector

X = (x0, x1, . . . , xN−1) ∈ RN .

we can view X as a function also denoted by X : {0, 1, . . . , N − 1} −→ R defined
by X(i) = xi for 0 ≤ i ≤ N − 1. Here, to study the topological features of X we
use the sub-level set of a piece-wise linear function fX : R −→ R associated with X
satisfying that fX(i) = X(i) = xi for 0 ≤ i ≤ N − 1.

To construct this function, we consider the basis functions {ϕ0, . . . , ϕN−1} of
continuous functions ϕi : R −→ R defined by

ϕi(s) :=


s− i+ 1 if i− 1 ≤ s ≤ i
i+ 1− s if i ≤ s ≤ i+ 1

0 if s /∈]i− 1, i+ 1[

where i = 1, . . . , N − 2 and

ϕ0(s) :=
{

1− s if 0 ≤ s ≤ 1
0 if s ∈ [0, 1]

ϕN−1(s) :=
{
s−N + 2 if N − 2 ≤ s ≤ N − 1

0 if s /∈ [N − 2, N − 1[
This allows us to construct a piece-wise continuous map fX : R −→ R by

fX(s) =
N−1∑
j=0

xjϕj(s),
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and also to endow RN with a norm given by

‖X‖ := ‖fX‖L2(R) =
(∫ ∞
−∞
|fX(s)|2ds

)1/2
.

In particular, we prove the following result, which helps us to identify the time series
given by the vector X in RN with the function fX in L2(R).

Proposition 4. The linear map Φ : (RN , ‖·‖) −→ (L2(R), ‖·‖L2(R)) given by Φ(X) =
fX is an injective isometry between Hilbert spaces. Furthermore, Φ(RN) is a closed
subspace in L2(RN).

Proof. The map is clearly isometric and injective because {ϕ0, . . . , ϕN−1} is a set of
linear independent functions in L2(R).

Here, we describe the maps fX ∈ Φ(RN) at the combinatorial level using the
connected components (intervals) associated with its λ sub-level sets

LSλ(fX) := {x ∈ [0, N − 1] : fX(x) ≤ λ}

for λ ∈ R. For this purpose, we introduce the following distinguished objects related
to the supp(fX) = [0, N − 1] ⊂ R of fX :

• The nodes or vertices denoted by

V := {[0], [1], . . . , [N − 1]}

that represent the components of the vector X,;

• The faces denoted by

F := {[0, 1][1, 2], . . . , [N − 2, N − 1]}

that represent the intervals used to construct the connected components of the
sub-level sets of the map fX. Recall that we consider

[i, i+ 1] := {z ∈ R : z = µxi+1 + (1− µ)xi, 0 ≤ µ ≤ 1} ⊂ R.

Let
λmax = max

s∈[0,N−1]
fX(s) = max

0≤i≤N−1
X(i),

and
λmin = min

s∈[0,N−1]
fX(s) = min

0≤i≤N−1
X(i).

For each λmin ≤ λ ≤ λmax, we introduce the following symbolic λ sub-level set
for the map fX :

LSλ(fX) := {σ ∈ F : f(σ) ≤ λ}
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For λmin ≤ λ ≤ λ′ ≤ λmax, it holds

LSλ(fX) ⊂ LSλ′(fX).

Our next goal was to quantify the evolution of the above symbolic λ sub-level
with. To this end, we introduce the notion of feature associated with the λ sub-level
set LSλ(fX).

We define the set of features for functions in Φ(RN) as

F(Φ(RN)) := {[i, j] ⊂ R : 0 ≤ i < j ≤ N − 1} .

We note that LSλ(fX) ⊂ F ⊂ F(Φ(RN)). Then next definition introduces the no-
tion of features for a symbolic λ sub-level set as the interval of F(Φ(RN)) constructed
by a maximal union of faces of LSλ(fX).

Definition 9. We suggest that I ∈ F(Φ(RN)) is a feature for the symbolic λ sub-level
set LSλ(fX) if there exists I1, . . . , Ik ∈ LSλ(fX) such that I = ⋃k

j=1 Ik and for every
J ∈ LSλ(fX) such that J 6= Ii for 1 ≤ i ≤ k it holds that I ∩ J = ∅. We denote by
F(LSλ(fX)) the set of features for the λ sub-level set LSλ(fX).

A feature for a λ sub-level set LSλ(fX) is the maximal interval of F(Φ(RN)) that
we can construct by unions of intervals in LSλ(fX). To illustrate this definition, we
give the following example:

Example 4. Let us consider the time series

X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

This allows us to construct the map fX as shown in Figure 31. Then, λmin = 7
and λmax = 14, and we have the following symbolic λ sub-level sets.

LSλ=7(fX) = ∅
LSλ=8(fX) = LSλ=7(fX) ∪ {[5, 6]}
LSλ=9(fX) = LSλ=8(fX) ∪ {[2, 3], [3, 4], [4, 5]}
LSλ=10(fX) = LSλ=9(fX) ∪ {[6, 7], [7, 8]}
LSλ=11(fX) = LSλ=10(fX)
LSλ=12(fX) = LSλ=11(fX)
LSλ=13(fX) = LSλ=11(fX)
LSλ=14(fX) = LSλ=11(fX) ∪ {[0, 1]}.

This allows us to compute the available features for each λ-value:

λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12 λ = 13 λ = 14
F(LSλ(fX)) ∅ [5, 6] [2, 6] [2, 8] [2, 8] [2, 8] [2, 8] [0, 8]
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Let F(fX) be the whole set of features for fX, that is,

F(fX) = {I : I ∈ F(LSλ(fX)) for some λmin ≤ λ ≤ λmax} .

Figure 31: The map fX for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Example 5. From Example 4, we obtain

F(fX) = {[5, 6], [2, 6], [2, 8], [0, 8]}.

We can represent the map λ 7→ LSλ(fX) from [λmin, λmax] to F(fX) as shown in
Figure 32.

Figure 32: The map λ 7→ LSλ(fX) for X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Let I ∈ F(fX); in order to quantify the persistence of this particular feature for
the map fX, we use the map λ 7→ LSλ(fX) from [λmin, λmax] to F(fX). To this end,
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we introduce the following definition: the birth point of the feature I is defined by

a(I) = inf {λ : I ∈ F(LSλ(fX))}

and the corresponding death point by

b(I) = sup {λ : I ∈ F(LSλ(fX))} .

In particular, we note that a([0, N − 1]) = λmax (see Figure 32). Since a(I) ≤
b(I) <∞ holds for all I ∈ F(fX), I 6= [0, N − 1], we call the finite interval [a(I), b(I)]
the barcode of the feature I ∈ F(fX) \ {[0, N − 1]}.

Example 6. From Example 4 we consider the features [5, 6] ∈ LSλ=8(fX), [2, 6] ∈
LSλ=9(fX), and [2, 8] ∈ LSλ=10(fX). Then, the feature [5, 6] has its birth point at
a([5, 6]) = 8 and its death point at b([5, 6]) = 9; the feature [2, 6] has its birth point
at a([2, 6]) = 9 and its death point at b([2, 6]) = 10. Finally, the feature [2, 8] has its
birth point at a([2, 8]) = 10 and its death point at b([2, 8]) = 14. As a consequence,
the set

B(fX) := {([5, 6]; 8, 9), ([2, 6]; 9, 10), ([2, 8]; 10, 14)}

of features and its corresponding barcodes contain the relevant information of the
shape of fX (see Figure 32).

Thus, we define the set of barcodes for fX by

B(fX) = {(I; a(I), b(I)) : I ∈ F(fX) \ {[0, N − 1]}}

and its persistence diagram as

PD(fX) :=
{

(a(I), b(I)) ∈ R2 : I ∈ F(fX) \ {[0, N − 1]}
}

(see Figure 33). An equivalent representation of the persistence diagram is the life-
time diagram for fX, which is constructed by means of a bijective transformation
T (a, b) = (a, b− a), acting over PD(fX), that is,

LT (fX) :=
{

(a(I), b(I)− a(I)) ∈ R2 : I ∈ F(fX)) \ {[0, N − 1]}
}

;

see Figure 34.
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Figure 33: Persistence diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

Figure 34: Life-time diagram for the map fX when X = (11, 14, 9, 7, 9, 7, 8, 10, 9).

In order to determine the grade of similarity between two barcodes from two
different time series, we need to set a similarity metric. To this end, we construct
the persistent image for fX as follows: we observe that LT (fX) is a finite set of
points, namely,

LT (fX) = {(a1, b1 − a1), . . . , (ak, bk − ak)}

for some natural numbers k ≥ 1 and such that b1− a1 ≤ b2− a2 . . . ≤ bk− ak. Then,
we consider a non-negative weighting function w : LT (fX) −→ [0, 1] given by

w(ai, bi − ai) = bi − ai
bk − ak

for 1 ≤ i ≤ k.

77



Finally, we fix M , a natural number, and take a bivariate normal distribu-
tion gu(x, y) centered at each point u ∈ LT (fX) and with its variance σ id =
1
M

max1≤i≤k(bi − ai) id, where id is the 2 × 2 identity matrix. A persistence ker-
nel is then defined by means of a function ρX : R2 → R, where

ρX(x, y) =
∑

u∈LT (fX)
w(u)gu(x, y). (23)

We associate with each X ∈ R a matrix in RM×M as follows: let ε > 0 be a non-
negative real number that is sufficiently small, and then consider a square region
ΩX,ε = [α, β] × [α∗, β∗] ⊂ R2, covering the support of ρX(x, y) (up to a certain
precision), such that ∫∫

ΩX,ε
ρX(x, y) dx dy ≥ 1− ε

holds. Next, we consider two equispaced partitions of the intervals

α = p0 ≤ p1 . . . ≤ pM = β and α∗ = p∗0 ≤ p∗1 . . . ≤ p∗M = β∗.

Now, we put

ΩX,ε =
M−1⋃
i=0

M−1⋃
j=0

[pi, pi+1]× [p∗j , p∗j+1] =
M−1⋃
i=0

M−1⋃
j=0

Pi,j

The persistence image of X associated with the partition P = {Pi,j} is then described
by the matrix given by the following equation:

PI(X,M,P , ε) =
(∫∫

Pi,j
ρX(x, y)dxdy

)i=M−1,j=M−1

i=0,j=0
∈ RM×M . (24)

4.6 Classification

Image classification is a procedure that is used to automatically categorize images
into classes by assigning to each image a label representative of its class. A supervised
classification algorithm requires a training sample for each class, that is, a collection
of data points whose class of interest is known. Labels are assigned to each class
of interest. The classification problem applied to a new observation is thus based
on how close a new point is to each training sample. The Euclidean distance is
the most common distance metric used in low-dimensional datasets. The training
samples are representative of the known classes of interest to the analyst. In order
to classify the persistence diagrams, we can use any state-of-the-art technique. In
our case, we considered the random forest classification.

Recall that we conducted 9 different experiments, with 24 samples associated
with each one of them corresponding to 3 samples for each of the different experi-
mental conditions: relaxed rigid driver, relaxed rigid passenger, relaxed SAV driver,
relaxed SAV passenger, tense rigid driver, tense rigid passenger, tense SAV driver,
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and tense SAV passenger. Their respective labels are {0, 0, 0, 0, 1, 1, 1, 1}. There-
fore, we designed the following training validation process: The model is trained
over 144 samples and evaluated over the remaining unseen 72 experiments (two-to-
one training-to-testing ratio). The split between training and sampling is achieved
using random shuffling and stratification to ensure balance between the classes. In
order to improve the evaluation of the model generalizability, we also performed
a cross-validation procedure following a leave-one-out strategy, consisting of itera-
tively training over the full dataset except one sample that was left out and used to
test and score the model. We used the accuracy metric to evaluate the classification
model. We can represent the performance of the model using the so-called confusion
matrix: a 2D entries table where elements account for the number of samples in
each category, with the first axis representing the true labels and the second axis
the predicted labels. We also computed the different classification metrics to obtain
a more detailed reporting of the model performances.

4.7 Results

The trained random forest classifier model for the persistence images has a notably
high accuracy score on the training dataset (144) for both approaches and high
accuracy for the testing dataset (72 samples). This suggests strong differentiation
of the images with the respect to their generating signals, see Figure 35. The scores
on the training and testing are 93 and 83%, respectively. The leave-one-out cross-
validation achieved a score of 81%, indicating a good variance–bias trade-off and
good generalization potential of the model.

Figure 35: Model performance for predicting the attention state.

4.8 Discussion

The combination of Morse theory and topological data analysis allows us to extract
information from real data without the need for smoothness or regularity assumption
on the time series. In our case, input data for each experiment were reduced from
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six-sensor time series of measurements to one single image containing the persistent
pattern for attention to the road. Using the obtained persistence images as the new
inputs, supervised learning proved to successfully predict the attention state of the
driver or passenger.

The procedure used and described does not involve any additional pre-processing
of the sensor data; is robust to noise and degraded signals; and supports large
quantities of data, which makes it efficient and scalable.
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5 Monitoring and Anticipating Robots Functioning Be-

haviors

In this chapter we aim at analyzing the topological content of the complex trajec-
tories that weeder-autonomous robots follow in operation. We will prove that the
topological descriptors of these trajectories are affected by the robot environment as
well as by the robot state, with respect to maintenance operations. Topological Data
Analysis will be used for extracting the trajectory descriptors. Then, appropriate
metrics will be applied in order to compare that topological representation of the
trajectories, for classifying them or for making efficient pattern recognition.

5.1 Introduction

Autonomous robots follow a number of rules introduced into their controllers [61,
62, 63]. However, when they interact with the environment, small variations may
result in long-time unpredictable motion. This behavior is very usual in mechanics,
characterizing systems exhibiting deterministic chaos.

In the practical case addressed in the present paper, a weeder robot (usually a
float of them) is expected to cover a patch of a vineyard, in an optimal manner.
Here, “optimal manner” refers to the path-line that allows covering the whole patch
in a minimum time. However, the ground orography has a significant variability, as
well as the location of the grapes. Robots are aimed at colliding the grape foots in
order to remove the grass around, and then numerous collisions following different
directions are needed to ensure that all the grass around the grape foot is adequately
removed. Figure 36 depicts one of these robots considered in the present study in
operational conditions.

Figure 36: Weeder robot from VITIROVER micro robotique viticole

All the practical variability (ground, grape location, grass distribution and size,
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obstacles, ...) as well as the intrinsic sensibility of the dynamics to small variabilities
in the physical and operational conditions, makes it impossible to define a deter-
ministic robot trajectory. In these conditions, an almost random motion seems to
be the most valuable alternative.

In practice, to avoid under-performances characteristic of fully random motions,
that random motion operating at the local scale is combined with a more global de-
terministic planning that tries to better control the vineyard coverage by sequencing
the operation at the different local patches covering the whole domain.

The present work does not aim at addressing such optimized operation condi-
tions that will be addressed in a future publication under progress, but it aims at
analyzing the data collected from a robot operating in different patches and under
different conditions (with respect to the maintenance operations) in order to iden-
tify the existence of patterns able to identify the particular patch in which the robot
operates, or to distinguish the different robot states with respect to the maintenance
operations.

Having a sort of QR-code or identity card of each robot, when it operates within
each patch, in a particular state (healthy or unhealthy), is of major relevance with re-
spect to the predictive or operational maintenance of robots or floats of autonomous
robots.

The present paper aims at analyzing the collected data in order to extract the
maximum information that could serve for differentiating them, enabling unsuper-
vised clustering and/or supervised classification, prior to any action concerning mod-
eling using adapted regressions.

5.2 Methods

Using data clustering is almost straightforward, as soon as data is homogeneous
and quantitatively expressible using integer or real numbers, enabling boolean or
algebraic operations (addition, multiplication, ...) The interest of organizing data
in groups, in a supervised or unsupervised manner, is that it is assumed that data
belonging to a given group shares some qualities with the members of the group.

When proceeding in an unsupervised manner, the only information to group the
data consists of the distance among them. Data that remain close to each other are
expected to share some properties or behavior. This is the rationale considered in the
very popular k-means technique [64, 65]. However, the notion of proximity, leading
to the derived concept of similarity, needs for the definition of a metric for comparison
purposes. When data are well defined in a vector space, distances can be defined
and data can be compared accordingly. In the case of supervised classification one
is looking for the linear (or nonlinear) frontier separating the different groups on the
basis of a quality or property that drives the data clustering. In this last case, the
best frontier separating two groups of data is the one maximizing the distance of
the available data to the frontier, in order to maximize the separation robustness.
This is how support vector machine, SVM, works, for instance [66].

In both cases (supervised and unsupervised) the existence of a metric enabling
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data comparison is assumed. However, very often data could be much more complex,
as for example when it concerns heterogeneous information, possibly categorial or
qualitative. This is for example the case when a manufactured part is described by
its identity card consisting of the name of the employee involved in the operation, the
designation of the employed materials (some of them given by its commercial name),
the temperature of the oven in which the part was cured and the processing time. In
that case, comparing two parts becomes quite controversial if the employed metric
is not properly defined. In these circumstances, usually, metrics are learned from
the existing training data, as is the case when using decision trees (or its random
forest counterpart) [67, 68], code-to-vector [16] or neural networks [69].

The situation becomes even more extreme when data have a large and deep
topology content. This is the case for example of time series or images of rich
microstructures. These are usually encountered in material science when describ-
ing metamaterials (also called functional materials), or those exhibiting gradient of
properties or mesoscopic architectures. Thus, even in nominal conditions, time se-
ries will differ if they are compared from their respective values at each time instant.
That is, two time series, even when they describe the same system in similar con-
ditions, never match perfectly. Thus, they differ even if they resemble in a certain
metric that should be learned. For example, our electrocardiogram measured during
two consecutive minutes will exhibit a resemblance, but certainly both of them are
not identical, thus making a perfect match impossible. A small variation will create
a misalignment needing for metrics less sensible to these effects. The same rationale
applies when comparing two profiles of a rough surface, two images of a foam taken
in two close locations, ... they exhibit a resemblance even if they do not perfectly
match.

Thus, techniques aiming at aligning data were proposed. In the case of time-
series, Dynamic Time Warping, DTW [70, 71] has been successfully applied in many
domains. The theory of optimal transport arose as a response to similar issues [38].

Another route consists of renouncing to align the data, and focussing on ex-
tracting the adequate, goal-oriented descriptors of these complex data, enabling
comparison, clustering, classification and modeling (from nonlinear regressions).

A first possibility consists of extracting the main statistical descriptors of time
series or images (moments, correlations, covariograms, ...) [72]. Sometimes, data
expressed in the usual space and time domains, are transformed into other spaces
where their manipulation is expected to be simpler, like Fourier, Laplace, DCT,
Wavelet, ... descriptions of data. The most valuable (in the sense given later)
descriptions seem to be those maximizing sparsity. These are widely considered
when using compressed sensing [24], because it represents a compact, concise and
complete way of representing data that seemed much more complex in the usual
physical space (space and time).

The present work considers this last route, but uses a description based on the
topology of data, described later, and successfully considered in our former works
for addressing complex mesostructures [25], time-series [2], rough surfaces [1] and
shapes [3], with the aim of classifying and also constructing robust regressions ex-
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Figure 37: Location of the different patches

pressing properties or performance from the input data expressed from its topological
description.

The present study, when compared with our former developments, addresses a
new and complex purpose: how the topology contained in the trajectory that an
autonomous robot follows in a cloudy environment (where interactions limits the
predictability horizon) can inform on the robot location (which patch into the whole
vineyard) or the robot state (with respect to maintenance operations).

5.2.1 Data description

In the study that follows, we consider a dataset consisting of the x and y-coordinates,
calculated from the GPS longitudes and latitudes, representing the recorded position
of the robot at time t:

D = {(x(t), y(t), t), t ∈ T }.

These coordinates span six different disjoint geographical patches within the whole
vineyard, as illustrated in Figure 37, that have been recorded in a period of time T
leading to the maps reported in Figure 38 that reflects the robot’s trajectory.

Maintenance operations are also known and properly identified in the provided
dataset. Thus, the dataset consists of a collection of n discrete, finite and compact
two-dimensional trajectories S1, . . . ,Sn.

5.2.2 Geometrical Features

We are interested in extracting the geometrical and topological features of the tra-
jectories in D across different scales. For that purpose, we introduce the so-called
Rips filtration. We construct a Rips complex from simplices of varying dimensions
that are generalizations of triangles of varying dimensions. More specifically, a d-
simplex is the smallest convex set of d+1 points, x0, . . . , xd where x1−x0, . . . , xd−x0
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Figure 38: Robot trajectories in the six considered vineyard patches (units in meters)

Figure 39: Simplices of different dimensions

are linearly independent, as illustrated in Fig. 39. The so-called abstract simplicial
complex is a finite collection of sets that is closed under the subset relation, i.e., if
a ∈ A and b ⊂ a, then b ∈ A.

Let S be a trajectory, defined from a finite compact set of points in R2, and
ε ≥ 0. The Rips complex of S at scale ε, Rε(S), is the abstract simplicial complex
consisting of all subsets of diameter up to ε:

Rε(S) := {σ ⊂ S | diam(σ) ≤ ε},

where the diameter of a set of points is the maximum distance between any two
points in the set.

Geometrically, we can construct the Rips complex by considering balls of radius
ε
2 , centered at each point in S. Whenever d balls have pairwise intersections, we add
a d− 1 dimensional simplex. An example of Rips complex is given in Fig. 40.

A filtration of a simplicial complex K is a nested sequence of subcomplexes
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Figure 40: Example of Rips complex computation: (top-left) ε = 0.5; (top-right)
ε = 1; (bottom-left) ε = 1.4; and (bottom-right) ε = 2.3.

starting at the empty set and ending with the full simplicial complex

∅ ⊂ K0 ⊂ · · · ⊂ K.

By varying the value of the scale parameter ε, from εmin = 0 to εmax = diam(S) we
get a family of nested Rips complexes known as the Rips filtration.

5.2.3 Persistent homology

In order to have a more exhaustive view on how the features are changing across dif-
ferent scales, the appearance and disappearance of each feature within the filtration
is tracked and coded into the homology groups Hk(S), where k is the homology di-
mension. The elements of a Homology Group Hk(S) are classes of chain of simplices
(“packets”) in the Rips complex. The use of homology groups allows us to perform
algebraic operations over the simplicial elements. The homology group H0(S) rep-
resents the vertices, while the homology group H1(S) represents the cycles (loops)
formed in the simplicial complex. Since our data is in R2 we are only interested in
k = 0 and k = 1.
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Given a homology group, we can now define how to track the appearance of the
features across different scales, by defining the homology group at a scale ε, Hε

k(S).
It represents the classes of simplices as described previously, but taken from Rε(S).
That is, the elements of Rε(S) with a filtration value lower than ε. This approach
is known as the persistent homology. It allows to quantify the appearance and
disappearance of the features across the different scales (discretized by considering
m values related to εj, j = 0, ...,m) :

• For H0(S), the birth scale of all vertices is set to zero, while the death scale
is the filtration value at which the vertex has been joined to another one by a
segment.

• For H1(S), the birth scale of a cycle is the filtration value at which a loop has
been formed, while the death scale is the filtration value at which the interior
of the loop has been covered.

We can formalize this as follows:

• The birth scale bγ of the feature γ

bγ = min
0≤j≤m

{εj : γ ∈ Hεj
k }

• The death scale dγ of the feature γ

dγ = max
0≤j≤m

{εj : γ ∈ Hεj
k }

The persistence of the features throughout the scales can then be represented by
the so-called persistence barcode of S. It is a histogram, where the bar associated to
each feature starts at the birth scale and ends at the death scale.

An example of persistent homology computation is given with the rips complex
in Fig. 41, and the associated barcode in Fig. 42. A loop is formed at ε = 0.9
(birth) and then covered at ε = 1.8 (death). It is represented by the red bar.

A more compact representation of the features persistence is the persistence
diagram of S, defined from

PD(S) = {(bγ, dγ) : γ ∈ Hk},

where bγ and dγ are the birth and death scales associated to the feature γ. In what
follows, in the trajectories analysis, we only consider one-dimensional features, i.e.,
k = 1.

The persistence diagram associated with the Rips complex shown in Fig. 41 is
given in Fig. 43. An equivalent representation of the persistence diagram consists
in the so-called life-time diagram of S, which is constructed by means of a bijective
transformation T (a, b) = (a, b− a), acting over PD(S), that is,

LT (S) :=
{

(a, b− a) ∈ R2 : (a, b) ∈ PD(S)
}
.
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Figure 41: Example of Rips complex computation: (top-left) ε = 0; (top-right)
ε = 0.5; (bottom-left) ε = 0.9; and (bottom-right) ε = 1.8.

In order to use the persistence features in a machine learning approach, we construct
the so-called persistent image of S. First, observe that LT (S) is a finite set of p
points,

LT (S) = {(a1, b1 − a1), . . . , (ap, bp − ap)},
and such that b1 − a1 ≤ b2 − a2 ≤ . . . ≤ bp − ap. Then, consider a non-negative
weighting function given by

w : LT (S)→ [0, 1]

(ai, bi − ai) 7→ w(ai, bi − ai) = bi − ai
bp − ap

, for 1 ≤ i ≤ p.

Finally, we fix M , a natural number, and take a bivariate normal distribution
gu(x, y) centered at each point u ∈ LT (S) with a variance σI2 = bp−ap

M
I2 (I2 is the

2× 2 identity matrix). A persistence kernel is then defined according to:

ρS : R2 → R
(x, y) 7→ ρS(x, y) =

∑
u∈LT (S)

w(u)gu(x, y).
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Figure 42: Persistence barcode: in black the H0 features, and in red the H1 feature.
Filtration value (scale) is represented in the x-axis.

Figure 43: Persistence Diagram: in black the H0 features, and in red the H1 feature.

We associate to a robot trajectory S ∈ R2 a matrix in RM×M as follows: let δ > 0
be a non-negative, small enough real number, and then consider a squared region
ΩS,δ = [a, b]× [c, d] ⊂ R2, covering the support of ρS(x, y) up to a certain precision
δ, such that ∫∫

ΩS,δ
ρS(x, y) dx dy ≥ 1− δ.

Then, we consider two uniform partitions of the intervals

a = p0 ≤ p1 ≤ . . . ≤ pM = b and c = q0 ≤ q1 ≤ . . . ≤ qM = d.
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Figure 44: Topological analysis of a trajectory: (top-left) Trajectory; (top-right)
Persistence diagram; (bottom-left) Lifetime diagram; and (bottom-right) Persistence
Image.

Finally, we express ΩS,δ from

ΩS,δ =
M−1⋃
i=0

M−1⋃
j=0

[pi, pi+1]× [qj, qj+1] =
M−1⋃
i=0

M−1⋃
j=0

Pij.

The persistence image of S associated with the partition P = {Pij} is then
described by the RM×M matrix with elements:

PI(S,M,P , δ)ij =
(∫∫

Pij
ρS(x, y)dxdy

)
for 0 ≤ i, j ≤ (M − 1).

An example of persistence computation for a given trajectory is given in Fig.44.

5.2.4 Measuring persistence similarity

Consider two data sets Su and Sv representing two trajectories. A matching between
two persistence diagrams, PD(Su) and PD(Sv), is a map ψ, that reads:

ψ : PD(Su) −→ PD(Sv),
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such that ∀γ = (b, d) ∈ PD(Su),

ψ(γ) = (ψ1(b), ψ2(d))
= (b′, d′) ∈ PD(Sv).

The map ψ associates each feature from PD(Su) to a feature from PD(Sv). The

optimal matching between PD(Su) and PD(Sv) is a matching ψ̂

ψ̂ : PD(Su) −→ PD(Sv),

minimizing the transport cost C to move the features from PD(Su) to PD(Sv):

Cmin =
∑

γ∈PD(Su)
‖γ − ψ̂(γ)‖2

=
∑

(b,d)∈PD(Su)
‖
(
b− ψ̂1(b), d− ψ̂2(d)

)
‖

2

=
∑

(b,d)∈PDk(Su)

√(
b− ψ̂1(b)

)2
+
(
d− ψ̂2(d)

)2
.

Then, to measure the degree of similarity between two trajectories Su and Sv we
consider the Wasserstein distance [38, 39] between PD(Su) and PD(Sv)

W
(
PD(Su),PD(Sv)

)
=

∑
(b,d)∈PD(Su)

√(
b− ψ̂1(b)

)2
+
(
d− ψ̂2(d)

)2
,

where ψ̂ is the optimal matching between PD(Su) and PD(Sv).
An example of matching between the persistence diagrams of two trajectories is

given in Fig. 45.

5.2.5 Barycenters of persistence diagrams

Consider now a collection S1 . . . Sn of trajectories with their associated diagrams
PD1 . . .PDn.
Since the space of persistence diagrams equipped with the Wasserstein distance,
the Wasserstein space, is not a linear space, the notion of barycenters [40] can be
extended for the persistence diagrams using the so-called Frechet mean [41], which
always exists in the context of averaging finitely many diagrams.

The Frechet mean of PD1 . . .PDn is any diagram minimizing the map

E : µ 7→
n∑
i=1

W (µ,PDi)2.

The computation of the barycenter µ has proven to be challenging, and multiple
approaches can be used, such as the Sinkhorn algorithm [42]. We will use the one
based on the Hungarian algorithm presented in [41] and consider Partial Optimal
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Figure 45: Optimal matching between two persistence diagrams related to two robot
trajectories

Matchings [43], as the diagrams may not be of the same size. In this case, points
from the diagonal are matched with the remaining (exceeding) points.

In our case, we estimate the barycenters of a finite family of persistence diagrams,
taking a Lagrangian approach by tracking the individual points of the diagrams.
Given a collection PD1 . . .PDn of persistence diagrams, we proceed as follows:

1. Intialize the estimation µ of the barycenter at a certain diagram µ = PDi0 .

2. Compute the optimal partial matchings ψ1 . . . ψn, between µ and PD1 . . .PDn
respectively.

3. Compute the updated barycenter µ̂, by averaging the transport of each point
in the barycenter µ

µ̂ = {y = 1
n

n∑
i=1

ψi(x), x ∈ µ}.

4. If µ̂ minimizes E , return µ̂. Otherwise, update µ = µ̂ and go back to 2.

An example of a barycenter of three persistence diagrams is given in Fig. 46.

5.2.6 Classification

Image classification is a procedure that is used to automatically categorize images
into classes by assigning to each image a label representative of its class. A supervised
classification algorithm requires a training sample for each class, that is, a collection
of data points whose class of interest is known. Labels are assigned to each class
of interest. The classification problem applied to a new observation (data) is thus
based on how close a new point is to each training sample. The Euclidean distance
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Figure 46: Barycenter (in black) of three persistence diagrams (red, blue and green)

is the most common metrics used in low-dimensional datasets. The training samples
are representative of the known classes of interest to the analyst. In order to classify
the persistence images, we considered the logistic regression algorithm.

Consider a training set
(
Xi
)n
i=1

of flattened persistence images, i.e., M × M -

component vectors, computed from a set
(
Si
)n
i=1

of trajectories as described earlier.

Associated is a list (Yi)ni=1 of binary labels {0, 1}, describing whether an image Xi
is in the interest set or not.

The training of the L2-penalized logistic regression binary classifier is then the
minimization of a cost function as described in the following optimization problem:

min
ω,c

1
2ω

Tω + C
p∑
i=0

log
(

exp
(
Yi
(
X T
i ω + c

))
+ 1

)
.

Here ω are the weights we optimize over, c a Bernouilli mean vector of the
weights, and C an inverse regularization parameter. Once trained, the model is
evaluated on a unseen set of flattened persistence images. The metrics used for the
model evaluation is the Accuracy Score defined as the number of correct predictions
over the number of samples.

5.3 Results

5.3.1 Determination of the patch in which the robot is located

We first want to predict whether a robot is in a certain patch. For that purpose we
choose one parcel as a target, and train a classification model as described in Section
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2.6. The complete dataset consists of daily trajectories for 240 days. For each day
a persistence image is computed, that will be used as input for the model (a sample
is depicted in Figure 44).

The samples are labelled according to the considered patch, 1 if the robot is in
the target patch, and 0 otherwise. The dataset is split into 65% for training and 35%
for testing. The proposed classifier achieves an 80% accuracy score in predicting the
patch at which the robot is, based on the persistence images.

5.3.2 Maintenance prediction

Then, we consider daily trajectories in the same patch, consisting of 50 samples. For
each day, a persistence image is computed, that will be used as input in the classifier.
The periods considered here are the ones in between two consecutive maintenance
operations of the robot. The samples are labelled 0 if they are associated to a day
before the maintenance date, 1 otherwise. The dataset is split into 65% for training
and 35% for testing. The model achieves a 90% accuracy score predicting the period
associated to the the sampled trajectories, proving that robot trajectories exhibit a
topological pattern when maintenance applies, fact that could be used for predictive
maintenance purposes.

Figure 47 depicts the Wasserstein distance between the persistence diagrams
for consecutive daily trajectories, with the maintenance operation emphasized in
red, whereas Fig. 48 shows the barycenters of each period between consecutive
maintenance operations. As it can be noticed from the persistence images in Fig.
48, maintenance operations affect the topology of the trajectory, as it was expected
from the fact that classification performs successfully as just reported.

To better support our hypothesis about the effect of maintenance on the tra-
jectory topology, we consider the first operation interval, the one before the first
maintenance, that correspond to the first persistence image in Fig. 48 (left), and
divide it in two parts with identical length. Then, the associated barycenters in both
half intervals are obtained. Both are represented in Fig. 49. As it can be noticed,
both of them resemble very much to the one associated to the whole interval (the
first picture in Fig. 48), all them (both in Fig. 49 and the first in Fig. 48) are
significantly different to the second image in Fig. 48 that represents the trajectory
topology after the first maintenance operation. These results support again our
assumption on the effect of maintenance on the trajectory topology.

5.4 Discussion

The characterization of the trajectories followed by the robot based on the geo-
graphical location proves to be a reliable method to differentiate between different
environments affecting the robot motion. Then, over a single patch, the classifica-
tion was proved being efficient to detect the changes in the robot signature related
to maintenance events.

The proposed topology-based framework for sampled trajectories seems a very
pertinent, powerful and intrinsic way of quantifying, characterizing and analyzing
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Figure 47: Time series of the Wasserstein distance between the persistence diagrams
for consecutive daily trajectories: in red the maintenance events.

Figure 48: Persistence images of the barycenters computed for each period

Figure 49: Persistence images of the two half-intervals related to the first period
whose persistence image was the first image in Fig. 48
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the topological and geometrical nature of the robot’s pathways. The strength of
the framework relies on both the topology description of the trajectory at multiple
scales, and the use of metrics features that can be combined with machine learning.
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6 Conclusions

The topological data analysis and persistent homology has proven to be a reliable
and useful approach to study the changes in the observed systems without a prior
knowledge of the physical phenomenon and modeling.

This methodology is particularly adapted for studying data sets with high topo-
logical and geometrical information such as shapes, signals, surfaces and trajectories.
By extracting the underlying algebraic structure of the data it is possible to com-
pare and detect changes in the studied systems and dynamics, extract statistical
descriptors and characterize the physical systems.

It is a robust and model agnostic methodology, with promising generalization
possibilities. Moreover, it does not require further continuity hypothesis on the data
manifold, while being scale and dimension sensitive.

Given the described framework and computations, it is essential to have a clear
specification of a given problem dimensionality in order to have an adapted geomet-
rical description: one-dimensional (such as univariate time series), two-dimensional
(such as planar trajectories), three-dimensional (such as deforming shapes), multi-
dimensional (multivariate time-series). The data size is also a crucial parameter, as
it may requires a particular choice of filtration. Additionally, some data specificity
can play a role such as Alpha filtration (triangulation) for meshed surfaces, Rips
filtration (spheres) for diffusion like dynamics, and Sublevelset filtration for sequen-
tial data. Finally, specific and custom metrics (optimal transport) allow to leverage
the computed persistence for the most relevant feature extraction. The properties
of these features (vector space, stability) will largely affect the choice of further
learning procedures.

This framework displays very promising capabilities for further investigations
and applications, such as in digital twins. It could allow to incorporate additional
sensors data sets, improve behavior and regime prediction, while being robust to
noise and model agnostic.
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