The teaching unit is mandatory.
The teaching unit is taught in French.
The teaching unit is taught in English.
Coordinateur : Hubert Olivier
olivier.hubert@ens-paris-saclay.fr
Pedagogical team :
Hubert, Olivier, Professeur des Universités, CNU 60, ENS Paris-Saclay
olivier.hubert@ens-paris-saclay.fr
Poncelet, Martin, Maître de conférences, CNU 60, ENS Paris-Saclay
martin.poncelet@ens-paris-saclay.fr
Roux, Stéphane, DR CNRS, INSIS, ENS Paris-Saclay
stephane.roux@ens-paris-saclay.fr
Hild, François, DR CNRS, INSIS, ENS Paris-Saclay
francois.hild@ens-paris-saclay.fr
Castelnau, Olivier, DR CNRS, INSIS, ENSAM
olivier.castelnau@ensam.eu
Morgeneyer, Thilo, Maître de recherches, Mines de Paris
thilo.morgeneyer@mines-paristech.fr
Richaud, Emmanuel, Professeur des Universités, CNU 60, ENSAM
emmanuel.richaud@ensam.eu
Gandiolle, Camille, Maître de conférences, CNU 60, Centralesupelec
camille.gandiolle@centralesupelec.fr
Negge, Jan, Centralesupelec
jan.neggers@centralesupelec.fr
Roland, Sébastien, Maître de conférences, CNU 60, ENSAM
Sebastien.ROLAND@ensam.eu
Gorny, Cyrille, Ingénieur, ENSAM
cyril.gorny@ensam.eu
Thierry, Auger, CR CNRS, INSIS, ENSAM
Thierry.AUGER@ensam.eu
Procedure and organisation :
Courses: Experiments for the study of mechanical behavior of materials (Machines, specimens, PID) Sensors and measurement (Principles of measurement, signal conditionning and numerization) Experimental plans Field Measurements – Digital Image Correlation (DIC – 2D/3D)) Numerical methods - field identification of properties Techniques for the analysis of the microstructure of materials (microscopy, X-ray diffraction)
Tutorials: tensile strengthening (elasticity, plasticity), thermomechanical, damage; heat treatments; image correlation; DTA / DSC; additive manufacturing; metallurgical analyzes, optical microscopy / SEM / TEM; electron diffraction.
Pedagogical objectives :
Content:
Solving a problem related with the mechanics of materials usually requires a precise knowledge of the material constitutive behaviour, and more generally of the basics properties of the material. The property that is aimed at being characterized determines the machine, the shape of the sample, the measurements techniques and also the identification algorithms. This course provides an overview of the classical experimental techniques employed in a material testing laboratory. It also aims at providing an insight into the development of advanced experimental methods, in particular full field measurements (especially kinematic), 1D, 2D, 3D et 4D. And finally it aims also at providing essential working methods that are required in the field of testing, such as estimating the uncertainties and the errors of data sets, or data fields, the spatial or temporal resolution etc... Emphasis will be placed on tutorial work, whose completion, analysis of results and writing will be evaluated by the teachers of the course. An exam will assess the culture acquired in the field of experimental techniques by the student during the semester.
skills:
Acquire the technical knowledge and skills associated with traditional and modern tools for measuring the behavior of materials
Complementary skills :
Digital Image Correlation, microscopy (optical, SEM, TEM), X-ray diffraction; All Learning (analysis, writing and synthesis) essential for the training of researchers and senior executives.
Prerequisites :
Continuum mechanics, elasticity, thermic, metallurgy (basic).
Bibliographie :
Grédiac, M., Hild, F. (éditeurs). Mesures de champs et identification en mécanique des solides. Traité MIM. Hermes. 2011.
Grédiac, M., Hild, F. (éditeurs). Full-field measurements and identification in solid mechanics (edited) Publisher ISTE / Wiley. 2013
F. Hild, S. Roux. Digital image correlation, in Optical Methods for Solid Mechanics. A Full-Field Approach, ed. by P. Rastogi, E. Hack (Wiley-VCH, Weinheim, 2012), pp. 183-228.
Benard, J., Michel A, Philibert J., Talbot J., (1984). Métallurgie générale, ed. Masson (France). Cullity B.D.,(2rd edition 1976), Elements of X-Ray Diffraction,